168 resultados para Scheduler simulator
Resumo:
Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.
Resumo:
This paper discusses human factors issues of low cost railway level crossings in Australia. Several issues are discussed in this paper including safety at passive level railway crossings, human factors considerations associated with unavailability of a warning device, and a conceptual model for how safety could be compromised at railway level crossings following prolonged or frequent unavailability. The research plans to quantify safety risk to motorists at level crossings using a Human Reliability Assessment (HRA) method, supported by data collected using an advanced driving simulator. This method aims to identify human error within tasks and task units identified as part of the task analysis process. It is anticipated that by modelling driver behaviour the current study will be able to quantify meaningful task variability including temporal parameters, between participants and within participants. The process of complex tasks such as driving through a level crossing is fundamentally context-bound. Therefore this study also aims to quantify those performance-shaping factors that contribute to vehicle train collisions by highlighting changes in the task units and driver physiology. Finally we will also consider a number of variables germane to ensuring external validity of our results. Without this inclusion, such an analysis could seriously underestimate risk.
Resumo:
Nursing training for an Intensive Care Unit (ICU) is a resource intensive process. High demands are made on staff, students and physical resources. Interactive, 3D computer simulations, known as virtual worlds, are increasingly being used to supplement training regimes in the health sciences; especially in areas such as complex hospital ward processes. Such worlds have been found to be very useful in maximising the utilisation of training resources. Our aim is to design and develop a novel virtual world application for teaching and training Intensive Care nurses in the approach and method for shift handover, to provide an independent, but rigorous approach to teaching these important skills. In this paper we present a virtual world simulator for students to practice key steps in handing over the 24/7 care requirements of intensive care patients during the commencing first hour of a shift. We describe the modelling process to provide a convincing interactive simulation of the handover steps involved. The virtual world provides a practice tool for students to test their analytical skills with scenarios previously provided by simple physical simulations, and live on the job training. Additional educational benefits include facilitation of remote learning, high flexibility in study hours and the automatic recording of a reviewable log from the session. To the best of our knowledge, we believe this is a novel and original application of virtual worlds to an ICU handover process. The major outcome of the work was a virtual world environment for training nurses in the shift handover process, designed and developed for use by postgraduate nurses in training.
Resumo:
Background: Trauma resulting from traffic crashes poses a significant problem in highly motorised countries. Over a million people worldwide are killed annually and 50 million are critically injured as a result of traffic collisions. In Australia, road crashes cost an average of $17 billion annually in personal loss of income and quality of life, organisational losses in productivity and workplace quality, and health care costs. Driver aggression has been identified as a key factor contributing to crashes, and many motorists report experiencing mild forms of aggression (e.g., rude gestures, horn honking). However despite this concern, driver aggression has received relatively little attention in empirical research, and existing research has been hampered by a number of methodological and conceptual shortcomings. Specifically, there has been substantial disagreement regarding what constitutes aggressive driving and a failure to examine both the situational factors and the emotional and cognitive processes underlying driver aggression. To enhance current understanding of aggressive driving, a model of driver aggression that highlights the cognitive and emotional processes at play in aggressive driving incidents is proposed. Aims: The research aims to improve current understanding of the complex nature of driver aggression by testing and refining a model of aggressive driving that incorporates the person-related and situational factors and the cognitive and emotional appraisal processes fundamental to driver aggression. In doing so, the research will assist to provide a clear definition of what constitutes aggressive driving, assist to identify on-road incidents that trigger driver aggression, and identify the emotional and cognitive appraisal processes that underlie driver aggression. Methods: The research involves three studies. Firstly, to contextualise the model and explore the cognitive and emotional aspects of driver aggression, a diary-based study using self-reports of aggressive driving events will be conducted with a general population of drivers. This data will be supplemented by in-depth follow-up interviews with a sub-sample of participants. Secondly, to test generalisability of the model, a large sample of drivers will be asked to respond to video-based scenarios depicting driving contexts derived from incidents identified in Study 1 as inciting aggression. Finally, to further operationalise and test the model an advanced driving simulator will be used with sample of drivers. These drivers will be exposed to various driving scenarios that would be expected to trigger negative emotional responses. Results: Work on the project has commenced and progress on the first study will be reported.
Resumo:
• What is risk compensation, and why is relevant to motor vehicle crashes? • Recent simulator work that revealed risk compensation • Current and future work on risk compensation
Resumo:
The impact of weather on traffic and its behavior is not well studied in literature primarily due to lack of integrated traffic and weather data. Weather can significant effect the traffic and traffic management measures developed for fine weather might not be optimal for adverse weather. Simulation is an efficient tool for analyzing traffic management measures even before their actual implementation. Therefore, in order to develop and test traffic management measures for adverse weather condition we need to first analyze the effect of weather on fundamental traffic parameters and thereafter, calibrate the simulation model parameters in order to simulate the traffic under adverse weather conditions. In this paper we first, analyses the impact of weather on motorway traffic flow and drivers’ behaviour with traffic data from Swiss motorways and weather data from MeteoSuisse. Thereafter, we develop methodology to calibrate a microscopic simulation model with the aim to utilize the simulation model for simulating traffic under adverse weather conditions. Here, study is performed using AIMSUN, a microscopic traffic simulator.
Resumo:
In this paper we describe the dynamic simulation of an 18 degrees of freedom hexapod robot with the objective of developing control algorithms for smooth, efficient and robust walking in irregular terrain. This is to be achieved by using force sensors in addition to the conventional joint angle sensors as proprioceptors. The reaction forces on the feet of the robot provide the necessary information on the robots interaction with the terrain. As a first step we validate the simulator by implementing movement control by joint torques using PID controllers. As an unexpected by-product we find that it is simple to achieve robust walking behaviour on even terrain for a hexapod with the help of PID controllers and by specifying a trajectory of only a few joint configurations.
Resumo:
The scheduling of locomotive movements on cane railways has proven to be a very complex task. Various optimisation methods have been used over the years to try and produce an optimised schedule that eliminates or minimises bin supply delays to harvesters and the factory, while minimising the number of locomotives, locomotive shifts and cane bins, and also the cane age. This paper reports on a new attempt to develop an automatic scheduler using a mathematical model solved using mixed integer programming and constraint programming approaches and blocking parallel job shop scheduling fundamentals. The model solution has been explored using conventional constraint programming search techniques and found to produce a reasonable schedule for small-scale problems with up to nine harvesters. While more effort is required to complete the development of the full model with metaheuristic search techniques, the work completed to date gives confidence that the metaheuristic techniques will provide near optimal solutions in reasonable time.
Resumo:
Due to grave potential human, environmental and economical consequences of collisions at sea, collision avoidance has become an important safety concern in navigation. To reduce the risk of collisions at sea, appropriate collision avoidance actions need to be taken in accordance with the regulations, i.e., International Regulations for Preventing Collisions at Sea. However, the regulations only provide qualitative rules and guidelines, and therefore it requires navigators to decide on collision avoidance actions quantitatively by using their judgments which often leads to making errors in navigation. To better help navigators in collision avoidance, this paper develops a comprehensive collision avoidance decision making model for providing whether a collision avoidance action is required, when to take action and what action to be taken. The model is developed based on three types of collision avoidance actions, such as course change only, speed change only, and a combination of both. The model has potential to reduce the chance of making human error in navigation by assisting navigators in decision making on collision avoidance actions.
Resumo:
Decline of alertness constitutes a normal physiological phenomenon but could be aggravated when drivers operate in monotonous environments, even in rested individuals. Driving performance is impaired and this increases crash risk due to inattention. This paper aims to show that road characteristics - namely road design (road geometry) and road side variability (signage and buildings) – influence subjective assessment of alertness by drivers. This study used a driving simulator to investigate the drivers’ ability to subjectively detect periods of time when their alertness is importantly reduced by varying road geometry and road environment. Driver’s EEG activity is recorded as a reference to evaluate objectively driver's alertness and is compared to self-reported alertness by participants. Twenty-five participants drove on four different scenarios (varying road design and road environment monotony) for forty minutes. It was observed that participants were significantly more accurate in their assessment before the driving task as compared to after (90% versus 60%). Errors in assessment were largely underestimations of their real alertness rather than over-estimations. The ability to detect low alertness as assessed with an EEG was highly dependent on the road monotony. Scenarios with low roadside variability resulted in high overestimation of the real alertness, which was not observed on monotonous road design. The findings have consequences for road safety and suggest that countermeasures to lapses of alertness cannot rely solely on self-assessment from drivers and road design should reduce environments with low variability.
Resumo:
Background: Sleepiness is a direct contributor to a substantial proportion of fatal and severe road cashes. A number of technological solutions designed to detect sleepiness have been developed, but self-awareness of increasing sleepiness remains a critical component in on-road strategies for mitigating this risk. In order to take appropriate action when sleepy, drivers’ perceptions of their level of sleepiness must be accurate. Aims: This study aimed to assess capacity to accurately identify sleepiness and self-regulate driving cessation during a validated driving simulator task. Participants: Participants comprised 26 young adult drivers (20-28 years). The drivers had open licenses but no other exclusion criteria where used. Methods: Participants woke at 5am, and took part in a laboratory-based hazard perception driving simulation, either at mid-morning or mid-afternoon. Established physiological measures (including EEG) and subjective measures (sleepiness ratings) previously found sensitive to changes in sleepiness levels were utilised. Participants were instructed to ‘drive’ until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 39 minutes (±18 minutes). Almost all (23/26) of the participants then achieved sleep during the nap opportunity. These data suggest that the participants’ perceptions of sleepiness were specific. However, EEG data from a number of participants suggested very high levels of sleepiness prior to driving cessation, suggesting poor sensitivity. Conclusions: Participants reported high levels of sleepiness while driving after very moderate sleep restriction. They were able to identify increasing sleepiness during the test period, could decide to cease driving and in most cases were sufficiently sleepy to achieve sleep during the daytime session. However, the levels of sleepiness achieved prior to driving cessation suggest poor accuracy in self-perception and regulation. This presents practical issues for the implementation of fatigue and sleep-related strategies to improve driver safety.
Resumo:
Background. Digital information is increasingly becoming available on all aspects of the urban landscape, anywhere and any time. Physical objects (c.f. the Internet of Things) and people (c.f. the Social Web) are increasingly infused with actuators, sensors and tagged with a wealth of digital information. Urban Informatics explores these emerging digital layers of the city. However, very little is known about the challenges and new opportunities that these developments may offer to road users. As we gradually spend more time using our mobile devices as well as our car, the tension between appeasing our craving for connectedness and road safety requirements grow farther apart. Objective. The aims of this paper are to identify (a) new opportunities that Urban Informatics research can offer to our future cars and (b) potential benefits to road safety. Methods. 14 Urban Informatics research experts were grouped into seven teams of two to participate in a guided ideation (idea creation) workshop in a driving simulator. They were immersed into different driving scenarios to brainstorm innovative Urban Informatics applications in different driving contexts. This qualitative study was then evaluated in the context of road safety. Outcomes. There is a lack of articulation between Urban Informatics and Road Safety research. Several Urban Informatics applications (e.g., to enhance social interaction between people in urban environments) may provide benefits, rather than threats, towards road safety, provided they are implemented ergonomically and safely. Conclusions. This research initiates a much-needed dialogue between Urban Informatics and Road Safety disciplines, in the context of Intelligent Transport Systems, before the fast approaching digital wave invades our cars. The dialogue will help to avoid driver distraction issues similar to mobile phones use in cars. As such, it provides valuable information for future regulators and policy makers in charge of shaping our future road transport landscape.
Resumo:
This paper examines the effects of an eco-driving message on driver distraction. Two in-vehicle distracter tasks were compared with an eco-driving task and a baseline task in an advanced driving simulator. N = 22 subjects were asked to perform an eco-driving, CD changing, and a navigation task while engaged in critical manoeuvres during which they were expected to respond to a peripheral detection task (PDT) with total duration of 3.5 h. The study involved two sessions over two consecutive days. The results show that drivers’ mental workloads are significantly higher during navigation and CD changing tasks in comparison to the two other scenarios. However, eco-driving mental workload is still marginally significant (p ∼ .05) across different manoeuvres. Similarly, event detection tasks show that drivers miss significantly more events in the navigation and CD changing scenarios in comparison to both the baseline and eco-driving scenario. Analysis of the practice effect shows that drivers’ baseline scenario and navigation scenario exhibit significantly less demand on the second day. Drivers also can detect significantly more events on the second day for all scenarios. The authors conclude that even reading a simple message while driving could potentially lead to missing an important event, especially when executing critical manoeuvres. However, there is some evidence of a practice effect which suggests that future research should focus on performance with habitual rather than novel tasks. It is recommended that sending text as an eco-driving message analogous to the study circumstances should not be delivered to drivers on-line when vehicle is in motion.
Resumo:
In microscopic traffic simulators, the interaction between vehicles is considered. The dynamics of the system then becomes an emergent property of the interaction between its components. Such interactions include lane-changing, car-following behaviours and intersection management. Although, in some cases, such simulators produce realistic prediction, they do not allow for an important aspect of the dynamics, that is, the driver-vehicle interaction. This paper introduces a physically sound vehicle-driver model for realistic microscopic simulation. By building a nanoscopic traffic simulation model that uses steering angle and throttle position as parameters, the model aims to overcome unrealistic acceleration and deceleration values, as found in various microscopic simulation tools. A physics engine calculates the driving force of the vehicle, and the preliminary results presented here, show that, through a realistic driver-vehicle-environment simulator, it becomes possible to model realistic driver and vehicle behaviours in a traffic simulation.