192 resultados para Scene classification
Resumo:
The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.
Resumo:
This paper describes a scene invariant crowd counting algorithm that uses local features to monitor crowd size. Unlike previous algorithms that require each camera to be trained separately, the proposed method uses camera calibration to scale between viewpoints, allowing a system to be trained and tested on different scenes. A pre-trained system could therefore be used as a turn-key solution for crowd counting across a wide range of environments. The use of local features allows the proposed algorithm to calculate local occupancy statistics, and Gaussian process regression is used to scale to conditions which are unseen in the training data, also providing confidence intervals for the crowd size estimate. A new crowd counting database is introduced to the computer vision community to enable a wider evaluation over multiple scenes, and the proposed algorithm is tested on seven datasets to demonstrate scene invariance and high accuracy. To the authors' knowledge this is the first system of its kind due to its ability to scale between different scenes and viewpoints.
Resumo:
Most learning paradigms impose a particular syntax on the class of concepts to be learned; the chosen syntax can dramatically affect whether the class is learnable or not. For classification paradigms, where the task is to determine whether the underlying world does or does not have a particular property, how that property is represented has no implication on the power of a classifier that just outputs 1’s or 0’s. But is it possible to give a canonical syntactic representation of the class of concepts that are classifiable according to the particular criteria of a given paradigm? We provide a positive answer to this question for classification in the limit paradigms in a logical setting, with ordinal mind change bounds as a measure of complexity. The syntactic characterization that emerges enables to derive that if a possibly noncomputable classifier can perform the task assigned to it by the paradigm, then a computable classifier can also perform the same task. The syntactic characterization is strongly related to the difference hierarchy over the class of open sets of some topological space; this space is naturally defined from the class of possible worlds and possible data of the learning paradigm.
Resumo:
Many existing schemes for malware detection are signature-based. Although they can effectively detect known malwares, they cannot detect variants of known malwares or new ones. Most network servers do not expect executable code in their in-bound network traffic, such as on-line shopping malls, Picasa, Youtube, Blogger, etc. Therefore, such network applications can be protected from malware infection by monitoring their ports to see if incoming packets contain any executable contents. This paper proposes a content-classification scheme that identifies executable content in incoming packets. The proposed scheme analyzes the packet payload in two steps. It first analyzes the packet payload to see if it contains multimedia-type data (such as . If not, then it classifies the payload either as text-type (such as or executable. Although in our experiments the proposed scheme shows a low rate of false negatives and positives (4.69% and 2.53%, respectively), the presence of inaccuracies still requires further inspection to efficiently detect the occurrence of malware. In this paper, we also propose simple statistical and combinatorial analysis to deal with false positives and negatives.
Resumo:
People interact with mobile computing devices everywhere, while sitting, walking, running or even driving. Adapting the interface to suit these contexts is important, thus this paper proposes a simple human activity classification system. Our approach uses a vector magnitude recognition technique to detect and classify when a person is stationary (or not walking), casually walking, or jogging, without any prior training. The user study has confirmed the accuracy.
Resumo:
In public places, crowd size may be an indicator of congestion, delay, instability, or of abnormal events, such as a fight, riot or emergency. Crowd related information can also provide important business intelligence such as the distribution of people throughout spaces, throughput rates, and local densities. A major drawback of many crowd counting approaches is their reliance on large numbers of holistic features, training data requirements of hundreds or thousands of frames per camera, and that each camera must be trained separately. This makes deployment in large multi-camera environments such as shopping centres very costly and difficult. In this chapter, we present a novel scene-invariant crowd counting algorithm that uses local features to monitor crowd size. The use of local features allows the proposed algorithm to calculate local occupancy statistics, scale to conditions which are unseen in the training data, and be trained on significantly less data. Scene invariance is achieved through the use of camera calibration, allowing the system to be trained on one or more viewpoints and then deployed on any number of new cameras for testing without further training. A pre-trained system could then be used as a ‘turn-key’ solution for crowd counting across a wide range of environments, eliminating many of the costly barriers to deployment which currently exist.
Resumo:
This paper considers issues of methodological innovation in communication, media and cultural studies, that arise out of the extent to which we now live in a media environment characterised by an digital media abundance, the convergence of media platforms, content and services, and the globalisation of media content through ubiquitous computing and high-speed broadband networks. These developments have also entailed a shift in the producer-consumer relationships that characterised the 20th century mass communications paradigm, with the rapid proliferation of user-created content, accelerated innovation, the growing empowerment of media users themselves, and the blurring of distinctions between public and private, as well as age-based distinctions in terms of what media can be accessed by whom and for what purpose. It considers these issues through a case study of the Australian Law Reform Commission's National Classification Scheme Review.
Resumo:
Purpose – The work presented in this paper aims to provide an approach to classifying web logs by personal properties of users. Design/methodology/approach – The authors describe an iterative system that begins with a small set of manually labeled terms, which are used to label queries from the log. A set of background knowledge related to these labeled queries is acquired by combining web search results on these queries. This background set is used to obtain many terms that are related to the classification task. The system then ranks each of the related terms, choosing those that most fit the personal properties of the users. These terms are then used to begin the next iteration. Findings – The authors identify the difficulties of classifying web logs, by approaching this problem from a machine learning perspective. By applying the approach developed, the authors are able to show that many queries in a large query log can be classified. Research limitations/implications – Testing results in this type of classification work is difficult, as the true personal properties of web users are unknown. Evaluation of the classification results in terms of the comparison of classified queries to well known age-related sites is a direction that is currently being exploring. Practical implications – This research is background work that can be incorporated in search engines or other web-based applications, to help marketing companies and advertisers. Originality/value – This research enhances the current state of knowledge in short-text classification and query log learning. Classification schemes, Computer networks, Information retrieval, Man-machine systems, User interfaces
Resumo:
Virtual environments can provide, through digital games and online social interfaces, extremely exciting forms of interactive entertainment. Because of their capability in displaying and manipulating information in natural and intuitive ways, such environments have found extensive applications in decision support, education and training in the health and science domains amongst others. Currently, the burden of validating both the interactive functionality and visual consistency of a virtual environment content is entirely carried out by developers and play-testers. While considerable research has been conducted in assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. The aim of this thesis is to determine whether the correctness of the images generated by a virtual environment can be quantitatively defined, and automatically measured, in order to facilitate the validation of the content. In an attempt to provide an environment-independent definition of visual consistency, a number of classification approaches were developed. First, a novel model-based object description was proposed in order to enable reasoning about the color and geometry change of virtual entities during a play-session. From such an analysis, two view-based connectionist approaches were developed to map from geometry and color spaces to a single, environment-independent, geometric transformation space; we used such a mapping to predict the correct visualization of the scene. Finally, an appearance-based aliasing detector was developed to show how incorrectness too, can be quantified for debugging purposes. Since computer games heavily rely on the use of highly complex and interactive virtual worlds, they provide an excellent test bed against which to develop, calibrate and validate our techniques. Experiments were conducted on a game engine and other virtual worlds prototypes to determine the applicability and effectiveness of our algorithms. The results show that quantifying visual correctness in virtual scenes is a feasible enterprise, and that effective automatic bug detection can be performed through the techniques we have developed. We expect these techniques to find application in large 3D games and virtual world studios that require a scalable solution to testing their virtual world software and digital content.
Resumo:
In this paper, we describe the main processes and operations in mining industries and present a comprehensive survey of operations research methodologies that have been applied over the last several decades. The literature review is classified into four main categories: mine design; mine production; mine transportation; and mine evaluation. Mining design models are further separated according to two main mining methods: open-pit and underground. Moreover, mine production models are subcategorised into two groups: ore mining and coal mining. Mine transportation models are further partitioned in accordance with fleet management, truck haulage and train scheduling. Mine evaluation models are further subdivided into four clusters in terms of mining method selection, quality control, financial risks and environmental protection. The main characteristics of four Australian commercial mining software are addressed and compared. This paper bridges the gaps in the literature and motivates researchers to develop more applicable, realistic and comprehensive operations research models and solution techniques that are directly linked with mining industries.
Resumo:
It is a big challenge to acquire correct user profiles for personalized text classification since users may be unsure in providing their interests. Traditional approaches to user profiling adopt machine learning (ML) to automatically discover classification knowledge from explicit user feedback in describing personal interests. However, the accuracy of ML-based methods cannot be significantly improved in many cases due to the term independence assumption and uncertainties associated with them. This paper presents a novel relevance feedback approach for personalized text classification. It basically applies data mining to discover knowledge from relevant and non-relevant text and constraints specific knowledge by reasoning rules to eliminate some conflicting information. We also developed a Dempster-Shafer (DS) approach as the means to utilise the specific knowledge to build high-quality data models for classification. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics support that the proposed technique achieves encouraging performance in comparing with the state-of-the-art relevance feedback models.