209 resultados para SINUS FLOOR AUGMENTATION
Resumo:
This paper describes the current state of RatSLAM, a Simultaneous Localisation and Mapping (SLAM) system based on models of the rodent hippocampus. RatSLAM uses a competitive attractor network to fuse visual and odometry information. Energy packets in the network represent pose hypotheses, which are updated by odometry and can be enhanced or inhibited by visual input. This paper shows the effectiveness of the system in real robot tests in unmodified indoor environments using a learning vision system. Results are shown for two test environments; a large corridor loop and the complete floor of an office building.
Resumo:
Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in residential, industrial and commercial buildings. Their structural behaviour and moment capacities are influenced by lateral-torsional buckling and hence a research study was undertaken to investigate the lateral-torsional buckling behaviour of cold-formed steel lipped channel beams at ambient and elevated temperatures. For this purpose a finite element model of a simply supported cold-formed steel lipped channel beam under uniform bending was developed first and validated using available numberical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional behaviour of cold-formed steel beams under varying conditions. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in Australia, New Zealand, American and European codes for cold-formed steel structures. Some very interesting results have been obtained. European design rules are found to be conservative while Australian and American design rules are unsafe. This paper presents the results of finite element analyses for ambient temperature conditions, and the comparison with the current design rules.
Resumo:
A significant amount (ca. 15-25 GL/a) of PRW (Purified Recycled Water) from urban areas is foreseen as augmentation of the depleted groundwater resources of the Lockyer Valley (approx. 80 km west of Brisbane). Theresearch project uses field investigations, lab trials and modelling techniques to address the key challenges: (i) how to determine benefits of individual users from the augmentation of a natural common pool resource; (ii) how to minimise impacts of applying different quality water on the Lockyer soils, to creeks and on aquifier materials; (iii) how to minimuse mobilisation of salts in the unsaturated and saturated zones as a result of increased deep drainage; (iv) determination of potential for direct aquifer recharge using injection wells?
Resumo:
This thesis explores a way to inform the architectural design process for contemporary workplace environments. It reports on both theoretical and practical outcomes through an exclusively Australian case study of a network enterprise comprised of collaborative, yet independent business entities. The internet revolution, substantial economic and cultural shifts, and an increased emphasis on lifestyle considerations have prompted a radical re-ordering of organisational relationships and the associated structures, processes, and places of doing business. The social milieu of the information age and the knowledge economy is characterised by an almost instantaneous flow of information and capital. This has culminated in a phenomenon termed by Manuel Castells as the network society, where physical locations are joined together by continuous communication and virtual connectivity. A new spatial logic encompassing redefined concepts of space and distance, and requiring a comprehensive shift in the approach to designing workplace environments for today’s adaptive, collaborative organisations in a dynamic business world, provides the backdrop for this research. Within the duality of space and an augmentation of the traditional notions of place, organisational and institutional structures pose new challenges for the design professions. The literature revealed that there has always been a mono-organisational focus in relation to workplace design strategies. The phenomenon of inter-organisational collaboration has enabled the identification of a gap in the knowledge relative to workplace design. This new context generated the formulation of a unique research construct, the NetWorkPlace™©, which captures the complexity of contemporary employment structures embracing both physical and virtual work environments and practices, and provided the basis for investigating the factors that are shaping and defining interactions within and across networked organisational settings. The methodological orientation and the methods employed follow a qualitative approach and an abductively driven strategy comprising two distinct components, a cross-sectional study of the whole of the network and a longitudinal study, focusing on a single discrete workplace site. The complexity of the context encountered dictated that a multi-dimensional investigative framework was required to be devised. The adoption of a pluralist ontology and the reconfiguration of approaches from traditional paradigms into a collaborative, trans-disciplinary, multi-method epistemology provided an explicit and replicatable method of investigation. The identification and introduction of the NetWorkPlace™© phenomenon, by necessity, spans a number of traditional disciplinary boundaries. Results confirm that in this context, architectural research, and by extension architectural practice, must engage with what other disciplines have to offer. The research concludes that no single disciplinary approach to either research or practice in this area of design can suffice. Pierre Bourdieau’s philosophy of ‘practice’ provides a framework within which the governance and technology structures, together with the mechanisms enabling the production of social order in this context, can be understood. This is achieved by applying the concepts of position and positioning to the corporate power dynamics, and integrating the conflict found to exist between enterprise standard and ferally conceived technology systems. By extending existing theory and conceptions of ‘place’ and the ‘person-environment relationship’, relevant understandings of the tensions created between Castells’ notions of the space of place and the space of flows are established. The trans-disciplinary approach adopted, and underpinned by a robust academic and practical framework, illustrates the potential for expanding the range and richness of understanding applicable to design in this context. The outcome informs workplace design by extending theoretical horizons, and by the development of a comprehensive investigative process comprising a suite of models and techniques for both architectural and interior design research and practice, collectively entitled the NetWorkPlace™© Application Framework. This work contributes to the body of knowledge within the design disciplines in substantive, theoretical, and methodological terms, whilst potentially also influencing future organisational network theories, management practices, and information and communication technology applications. The NetWorkPlace™© as reported in this thesis, constitutes a multi-dimensional concept having the capacity to deal with the fluidity and ambiguity characteristic of the network context, as both a topic of research and the way of going about it.
Resumo:
Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.
Resumo:
LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a combined cold-forming and electric resistance welding process. OneSteel Australian Tube Mills is promoting the use of LSBs as flexural members in a range of applications, such as floor bearers. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity and thus extend their applications further. However, the structural behaviour of built-up beams is not well understood. Many steel design codes include guidelines for connecting two channels to form a built-up I-section including the required longitudinal spacing of connections. But these rules were found to be inadequate in some applications. Currently the safe spans of builtup beams are determined based on twice the moment capacity of a single section. Research has shown that these guidelines are conservative. Therefore large scale lateral buckling tests and advanced numerical analyses were undertaken to investigate the flexural behaviour of back to back LSBs connected by fasteners (bolts) at various longitudinal spacings under uniform moment conditions. In this research an experimental investigation was first undertaken to study the flexural behaviour of back to back LSBs including its buckling characteristics. This experimental study included tensile coupon tests, initial geometric imperfection measurements and lateral buckling tests. The initial geometric imperfection measurements taken on several back to back LSB specimens showed that the back to back bolting process is not likely to alter the imperfections, and the measured imperfections are well below the fabrication tolerance limits. Twelve large scale lateral buckling tests were conducted to investigate the behaviour of back to back built-up LSBs with various longitudinal fastener spacings under uniform moment conditions. Tests also included two single LSB specimens. Test results showed that the back to back LSBs gave higher moment capacities in comparison with single LSBs, and the fastener spacing influenced the ultimate moment capacities. As the fastener spacing was reduced the ultimate moment capacities of back to back LSBs increased. Finite element models of back to back LSBs with varying fastener spacings were then developed to conduct a detailed parametric study on the flexural behaviour of back to back built-up LSBs. Two finite element models were developed, namely experimental and ideal finite element models. The models included the complex contact behaviour between LSB web elements and intermittently fastened bolted connections along the web elements. They were validated by comparing their results with experimental results and numerical results obtained from an established buckling analysis program called THIN-WALL. These comparisons showed that the developed models could accurately predict both the elastic lateral distortional buckling moments and the non-linear ultimate moment capacities of back to back LSBs. Therefore the ideal finite element models incorporating ideal simply supported boundary conditions and uniform moment conditions were used in a detailed parametric study on the flexural behaviour of back to back LSB members. In the detailed parametric study, both elastic buckling and nonlinear analyses of back to back LSBs were conducted for 13 LSB sections with varying spans and fastener spacings. Finite element analysis results confirmed that the current design rules in AS/NZS 4600 (SA, 2005) are very conservative while the new design rules developed by Anapayan and Mahendran (2009a) for single LSB members were also found to be conservative. Thus new member capacity design rules were developed for back to back LSB members as a function of non-dimensional member slenderness. New empirical equations were also developed to aid in the calculation of elastic lateral distortional buckling moments of intermittently fastened back to back LSBs. Design guidelines were developed for the maximum fastener spacing of back to back LSBs in order to optimise the use of fasteners. A closer fastener spacing of span/6 was recommended for intermediate spans and some long spans where the influence of fastener spacing was found to be high. In the last phase of this research, a detailed investigation was conducted to investigate the potential use of different types of connections and stiffeners in improving the flexural strength of back to back LSB members. It was found that using transverse web stiffeners was the most cost-effective and simple strengthening method. It is recommended that web stiffeners are used at the supports and every third points within the span, and their thickness is in the range of 3 to 5 mm depending on the size of LSB section. The use of web stiffeners eliminated most of the lateral distortional buckling effects and hence improved the ultimate moment capacities. A suitable design equation was developed to calculate the elastic lateral buckling moments of back to back LSBs with the above recommended web stiffener configuration while the same design rules developed for unstiffened back to back LSBs were recommended to calculate the ultimate moment capacities.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using a patented Dual Electric Resistance Welding technique. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is commonly used as rafters, floor joists and bearers and roof beams in residential, industrial and commercial buildings. It is on average 40% lighter than traditional hot-rolled steel beams of equivalent performance. The LSB flexural members are subjected to a relatively new Lateral Distortional Buckling mode, which reduces the member moment capacity. Unlike the commonly observed lateral torsional buckling of steel beams, lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and web distortion. Current member moment capacity design rules for lateral distortional buckling in AS/NZS 4600 (SA, 2005) do not include the effect of section geometry of hollow flange beams although its effect is considered to be important. Therefore detailed experimental and finite element analyses (FEA) were carried out to investigate the lateral distortional buckling behaviour of LSBs including the effect of section geometry. The results showed that the current design rules in AS/NZS 4600 (SA, 2005) are over-conservative in the inelastic lateral buckling region. New improved design rules were therefore developed for LSBs based on both FEA and experimental results. A geometrical parameter (K) defined as the ratio of the flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was identified as the critical parameter affecting the lateral distortional buckling of hollow flange beams. The effect of section geometry was then included in the new design rules using the new parameter (K). The new design rule developed by including this parameter was found to be accurate in calculating the member moment capacities of not only LSBs, but also other types of hollow flange steel beams such as Hollow Flange Beams (HFBs), Monosymmetric Hollow Flange Beams (MHFBs) and Rectangular Hollow Flange Beams (RHFBs). The inelastic reserve bending capacity of LSBs has not been investigated yet although the section moment capacity tests of LSBs in the past revealed that inelastic reserve bending capacity is present in LSBs. However, the Australian and American cold-formed steel design codes limit them to the first yield moment. Therefore both experimental and FEA were carried out to investigate the section moment capacity behaviour of LSBs. A comparison of the section moment capacity results from FEA, experiments and current cold-formed steel design codes showed that compact and non-compact LSB sections classified based on AS 4100 (SA, 1998) have some inelastic reserve capacity while slender LSBs do not have any inelastic reserve capacity beyond their first yield moment. It was found that Shifferaw and Schafer’s (2008) proposed equations and Eurocode 3 Part 1.3 (ECS, 2006) design equations can be used to include the inelastic bending capacities of compact and non-compact LSBs in design. As a simple design approach, the section moment capacity of compact LSB sections can be taken as 1.10 times their first yield moment while it is the first yield moment for non-compact sections. For slender LSB sections, current cold-formed steel codes can be used to predict their section moment capacities. It was believed that the use of transverse web stiffeners could improve the lateral distortional buckling moment capacities of LSBs. However, currently there are no design equations to predict the elastic lateral distortional buckling and member moment capacities of LSBs with web stiffeners under uniform moment conditions. Therefore, a detailed study was conducted using FEA to simulate both experimental and ideal conditions of LSB flexural members. It was shown that the use of 3 to 5 mm steel plate stiffeners welded or screwed to the inner faces of the top and bottom flanges of LSBs at third span points and supports provided an optimum web stiffener arrangement. Suitable design rules were developed to calculate the improved elastic buckling and ultimate moment capacities of LSBs with these optimum web stiffeners. A design rule using the geometrical parameter K was also developed to improve the accuracy of ultimate moment capacity predictions. This thesis presents the details and results of the experimental and numerical studies of the section and member moment capacities of LSBs conducted in this research. It includes the recommendations made regarding the accuracy of current design rules as well as the new design rules for lateral distortional buckling. The new design rules include the effects of section geometry of hollow flange steel beams. This thesis also developed a method of using web stiffeners to reduce the lateral distortional buckling effects, and associated design rules to calculate the improved moment capacities.
Resumo:
This work investigates the computer modelling of the photochemical formation of smog products such as ozone and aerosol, in a system containing toluene, NOx and water vapour. In particular, the problem of modelling this process in the Commonwealth Scientific and Industrial Research Organization (CSIRO) smog chambers, which utilize outdoor exposure, is addressed. The primary requirement for such modelling is a knowledge of the photolytic rate coefficients. Photolytic rate coefficients of species other than N02 are often related to JNo2 (rate coefficient for the photolysis ofN02) by a simple factor, but for outdoor chambers, this method is prone to error as the diurnal profiles may not be similar in shape. Three methods for the calculation of diurnal JNo2 are investigated. The most suitable method for incorporation into a general model, is found to be one which determines the photolytic rate coefficients for N02, as well as several other species, from actinic flux, absorption cross section and quantum yields. A computer model was developed, based on this method, to calculate in-chamber photolysis rate coefficients for the CSIRO smog chambers, in which ex-chamber rate coefficients are adjusted by accounting for variation in light intensity by transmittance through the Teflon walls, albedo from the chamber floor and radiation attenuation due to clouds. The photochemical formation of secondary aerosol is investigated in a series of toluene-NOx experiments, which were performed in the CSIRO smog chambers. Three stages of aerosol formation, in plots of total particulate volume versus time, are identified: a delay period in which no significant mass of aerosol is formed, a regime of rapid aerosol formation (regime 1) and a second regime of slowed aerosol formation (regime 2). Two models are presented which were developed from the experimental data. One model is empirically based on observations of discrete stages of aerosol formation and readily allows aerosol growth profiles to be calculated. The second model is based on an adaptation of published toluene photooxidation mechanisms and provides some chemical information about the oxidation products. Both models compare favorably against the experimental data. The gross effects of precursor concentrations (toluene, NOx and H20) and ambient conditions (temperature, photolysis rate) on the formation of secondary aerosol are also investigated, primarily using the mechanism model. An increase in [NOx]o results in increased delay time, rate of aerosol formation in regime 1 and volume of aerosol formed in regime 1. This is due to increased formation of dinitrocresol and furanone products. An increase in toluene results in a decrease in the delay time and an increase in the rate of aerosol formation in regime 1, due to enhanced reactivity from the toluene products, such as the radicals from the photolysis of benzaldehyde. Water vapor has very little effect on the formation of aerosol volume, except that rates are slightly increased due to more OH radicals from reaction with 0(1D) from ozone photolysis. Increased temperature results in increased volume of aerosol formed in regime 1 (increased dinitrocresol formation), while increased photolysis rate results in increased rate of aerosol formation in regime 1. Both the rate and volume of aerosol formed in regime 2 are increased by increased temperature or photolysis rate. Both models indicate that the yield of secondary particulates from hydrocarbons (mass concentration aerosol formed/mass concentration hydrocarbon precursor) is proportional to the ratio [NOx]0/[hydrocarbon]0
Resumo:
Tracking/remote monitoring systems using GNSS are a proven method to enhance the safety and security of personnel and vehicles carrying precious or hazardous cargo. While GNSS tracking appears to mitigate some of these threats, if not adequately secured, it can be a double-edged sword allowing adversaries to obtain sensitive shipment and vehicle position data to better coordinate their attacks, and to provide a false sense of security to monitoring centers. Tracking systems must be designed with the ability to perform route-compliance and thwart attacks ranging from low-level attacks such as the cutting of antenna cables to medium and high-level attacks involving radio jamming and signal / data-level simulation, especially where the goods transported have a potentially high value to terrorists. This paper discusses the use of GNSS in critical tracking applications, addressing the mitigation of GNSS security issues, augmentation systems and communication systems in order to provide highly robust and survivable tracking systems.
Resumo:
Background, Aim and Scope The impact of air pollution on school children’s health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. Materials and methods In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM2.5), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. Results For outdoor PN and PM2.5, early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM2.5 and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM2.5 level was mainly affected by the outdoor PM2.5 (r = 0.68, p<0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p<0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM2.5 was inversely correlated with the indoor to outdoor PM2.5 ratio (I/O ratio) (r = -0.49, p<0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p<0.01). Discussion and Conclusions The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100 – 400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM2.5 was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. Recommendations and Perspectives The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimizing the adverse health effects on school children.
Resumo:
The increasing ubiquity of digital technology, internet ser-vices and social media in our everyday lives allows for a seamless transitioning between the visible and the invisible infrastructure of cities: road systems, building complexes, information and communication technology, and people networks create a buzzing environment that is alive and exciting. Driven by curiosity, initiative and interdiscipli-nary exchange, the Urban Informatics Research Lab at Queensland University of Technology (QUT), Brisbane, Australia, is an emerging cluster of people interested in research and development at the intersection of people, place and technology with a focus on cities, locative media and mobile technology. This paper seeks to define, for the first time, what we mean by ‘urban informatics’ and outline its significance as a field of study today. It describes the relevant background and trends in each of the areas of peo-ple, place and technology, and highlights the relevance of urban informatics to the concerns and evolving challenges of CSCW. We then position our work in academia juxta-posed with related research concentrations and labels, fol-lowed by a discussion of disciplinary influences. The paper concludes with an exposé of the three current research themes of the lab around augmented urban spaces, urban narratives, and environmental sustainability in order to illustrate specific cases and methods, and to draw out distinctions that our affiliation with the Creative Industries Faculty affords.
Resumo:
Network has emerged from a contempory worldwide phenomenon, culturally manifested as a consequence of globalization and the knowledge economy. It is in this context that the internet revolution has prompted a radical re-ordering of social and institutional relations and the associated structures, processes and places which support them. Within the duality of virtual space and the augmentation of traditional notions of physical place, the organizational structures pose new challenges for the design professions. Technological developments increasingly permit communication anytime and anywhere, and provide the opportunity for both synchronous and asynchronous collaboration. The resultant ecology formed through the network enterprise has resulted in an often convolted and complex world wherein designers are forced to consider the relevance and meaning of this new context. The role of technology and that of space are thus interwined in the relation between the network and the individual workplace. This paper explores a way to inform the interior desgn process for contemporary workplace environments. It reports on both theoretical and practical outcomes through an Australia-wide case study of three collaborating, yet independent business entities. It further suggests the link between workplace design and successful business innovation being realized between partnering organizations in Great Britain. Evidence presented indicates that, for architects and interior designers, the scope of the problem has widened, the depth of knowledge required to provide solutions has increased, and the rules of engagement are required to change. The ontological and epistemological positions adopted in the study enabled the spatial dimensions to be examined from both within and beyond the confines of a traditional design only viewpoint. Importantly it highlights the significance of a trans-disiplinary collaboration in dealing with the multiple layers and complexity of the contemporary social and business world, from both a research and practice perspective.
Resumo:
Life Cycle Cost Analysis provides a form of synopsis of the initial and consequential costs of building related decisions. These cost figures may be implemented to justify higher investments, for example, in the quality or flexibility of building solutions through a long term cost reduction. The emerging discipline of asset mnagement is a promising approach to this problem, because it can do things that techniques such as balanced scorecards and total quantity cannot. Decisions must be made about operating and maintaining infrastructure assets. An injudicious sensitivity of life cycle costing is that the longer something lasts, the less it costs over time. A life cycle cost analysis will be used as an economic evaluation tool and collaborate with various numbers of analyses. LCCA quantifies incurring costs commonly overlooked (by property and asset managers and designs) as replacement and maintenance costs. The purpose of this research is to examine the Life Cycle Cost Analysis on building floor materials. By implementing the life cycle cost analysis, the true cost of each material will be computed projecting 60 years as the building service life and 5.4% as the inflation rate percentage to classify and appreciate the different among the materials. The analysis results showed the high impact in selecting the floor materials according to the potential of service life cycle cost next.
Resumo:
Auto rickshaws (3-wheelers) are the most sought after transport among the urban and rural poor in India. The assembly of the vehicle involves assemblies of several major components. The L-angle is the component that connects the front panel with the vehicle floor. Current L-angle part has been observed to experience permanent deformation failure over period of time. This paper studies the effect of the addition of stiffeners on the L-angle to increase the strength of the component. A physical model of the L-angle was reversed engineered and modelled in CAD before static loading analysis were carried out on the model using finite element analysis. The modified L-angle fitted with stiffeners was shown to be able to withstand more load compare to previous design.