191 resultados para SACBROOD VIRUS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the structure and extent of genetic diversity in intrahost populations of Ross River virus (RRV) in samples from six human patients, focusing on the nonstructural (nsP3) and structural (E2) protein genes. Strikingly, although the samples were collected from contrasting ecological settings 3,000 kilometers apart in Australia, we observed multiple viral lineages in four of the six individuals, which is indicative of widespread mixed infections. In addition, a comparison with previously published RRV sequences revealed that these distinct lineages have been in circulation for at least 5 years, and we were able to document their long-term persistence over extensive geographical distances

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(−)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT). The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch). In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (−)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT. Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assay for the bovine viral diarrhoea virus (BVDV) replicase was developed using extracts from BVDV-infected cells. The replicase activity was maximal approximately 8 h post-infection as measured by the generation of a genomic length radiolabelled RNA. Using a semi-denaturing gel system, three virus-specific in vitro radiolabelled nascent RNA species were identified. A fast-migrating RNA was demonstrated to be the double-stranded replicative form (RF). A second form was shown to be a partially single-stranded/partially doublestranded RNA, characteristic of the replicative intermediate (RI). A third form, which was often undetectable, migrated between the RF and RI and was probably genomic viral RNA. The optimal replicase activity was dependent on 5–10mM Mg2+ and although it was also active in 1–2mM Mn2+ it was inhibited at higher concentrations. The optimum KCl concentration for labelling of the RI and RF were different, suggestive of at least two distinct replicase activities. These results are supportive of a semi-conservative model of BVDV RNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV ) core (C) protein is thought to bind to viral RNA before it undergoes oligomerization leading to RNA encapsidation. Details of these events are so far unknown. The 5ʹ-terminal C protein coding sequence that includes an adenine (A)-rich tract is a part of an internal ribosome entry site(IRES). This nucleotide sequence but not the corresponding protein sequence is needed for proper initiation of translation of viral RNA by an IRES-dependent mechanism. In this study, we examined the importance of this sequence for the ability of the C protein to bind to viral RNA. Serially truncated C proteins with deletions from 10 up to 45 N-terminal amino acids were expressed in Escherichia coli, purified and tested for binding to viral RNA by a gel shift assay. The results showed that truncation of the C protein from its N-terminus by more than 10 amino acids abolished almost completely its expression in E. coli. The latter could be restored by adding a tag to the N-terminus of the protein. The tagged proteins truncated by 15 or more amino acids showed an anomalous migration in SDS-PAGE. Truncation by more than 20 amino acids resulted in a complete loss of ability of tagged C protein to bind to viral RNA. These results provide clues to the early events in the C protein - RNA interactions leading to C protein oligomerization, RNA encapsidation and virion assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bananas are one of the world�fs most important crops, serving as a staple food and an important source of income for millions of people in the subtropics. Pests and diseases are a major constraint to banana production. To prevent the spread of pests and disease, farmers are encouraged to use disease�] and insect�]free planting material obtained by micropropagation. This option, however, does not always exclude viruses and concern remains on the quality of planting material. Therefore, there is a demand for effective and reliable virus indexing procedures for tissue culture (TC) material. Reliable diagnostic tests are currently available for all of the economically important viruses of bananas with the exception of Banana streak viruses (BSV, Caulimoviridae, Badnavirus). Development of a reliable diagnostic test for BSV is complicated by the significant serological and genetic variation reported for BSV isolates, and the presence of endogenous BSV (eBSV). Current PCR�] and serological�]based diagnostic methods for BSV may not detect all species of BSV, and PCR�]based methods may give false positives because of the presence of eBSV. Rolling circle amplification (RCA) has been reported as a technique to detect BSV which can also discriminate between episomal and endogenous BSV sequences. However, the method is too expensive for large scale screening of samples in developing countries, and little information is available regarding its sensitivity. Therefore the development of reliable PCR�]based assays is still considered the most appropriate option for large scale screening of banana plants for BSV. This MSc project aimed to refine and optimise the protocols for BSV detection, with a particular focus on developing reliable PCR�]based diagnostics Initially, the appropriateness and reliability of PCR and RCA as diagnostic tests for BSV detection were assessed by testing 45 field samples of banana collected from nine districts in the Eastern region of Uganda in February 2010. This research was also aimed at investigating the diversity of BSV in eastern Uganda, identifying the BSV species present and characterising any new BSV species. Out of the 45 samples tested, 38 and 40 samples were considered positive by PCR and RCA, respectively. Six different species of BSV, namely Banana streak IM virus (BSIMV), Banana streak MY virus (BSMYV), Banana streak OL virus (BSOLV), Banana streak UA virus (BSUAV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), were detected by PCR and confirmed by RCA and sequencing. No new species were detected, but this was the first report of BSMYV in Uganda. Although RCA was demonstrated to be suitable for broad�]range detection of BSV, it proved time�]consuming and laborious for identification in field samples. Due to the disadvantages associated with RCA, attempts were made to develop a reliable PCR�]based assay for the specific detection of episomal BSOLV, Banana streak GF virus (BSGFV), BSMYV and BSIMV. For BSOLV and BSGFV, the integrated sequences exist in rearranged, repeated and partially inverted portions at their site of integration. Therefore, for these two viruses, primers sets were designed by mapping previously published sequences of their endogenous counterparts onto published sequences of the episomal genomes. For BSOLV, two primer sets were designed while, for BSGFV, a single primer set was designed. The episomalspecificity of these primer sets was assessed by testing 106 plant samples collected during surveys in Kenya and Uganda, and 33 leaf samples from a wide range of banana cultivars maintained in TC at the Maroochy Research Station of the Department of Employment, Economic Development and Innovation (DEEDI), Queensland. All of these samples had previously been tested for episomal BSV by RCA and for both BSOLV and BSGFV by PCR using published primer sets. The outcome from these analyses was that the newly designed primer sets for BSOLV and BSGFV were able to distinguish between episomal BSV and eBSV in most cultivars with some B�]genome component. In some samples, however, amplification was observed using the putative episomal�]specific primer sets where episomal BSV was not identified using RCA. This may reflect a difference in the sensitivity of PCR compared to RCA, or possibly the presence of an eBSV sequence of different conformation. Since the sequences of the respective eBSV for BSMYV and BSIMV in the M. balbisiana genome are not available, a series of random primer combinations were tested in an attempt to find potential episomal�]specific primer sets for BSMYV and BSIMV. Of an initial 20 primer combinations screened for BSMYV detection on a small number of control samples, 11 primers sets appeared to be episomal�]specific. However, subsequent testing of two of these primer combinations on a larger number of control samples resulted in some inconsistent results which will require further investigation. Testing of the 25 primer combinations for episomal�]specific detection of BSIMV on a number of control samples showed that none were able to discriminate between episomal and endogenous BSIMV. The final component of this research project was the development of an infectious clone of a BSV endemic in Australia, namely BSMYV. This was considered important to enable the generation of large amounts of diseased plant material needed for further research. A terminally redundant fragment (.1.3 �~ BSMYV genome) was cloned and transformed into Agrobacterium tumefaciens strain AGL1, and used to inoculate 12 healthy banana plants of the cultivars Cavendish (Williams) by three different methods. At 12 weeks post�]inoculation, (i) four of the five banana plants inoculated by corm injection showed characteristic BSV symptoms while the remaining plant was wilting/dying, (ii) three of the five banana plants inoculated by needle�]pricking of the stem showed BSV symptoms, one plant was symptomless while the remaining had died and (iii) both banana plants inoculated by leaf infiltration were symptomless. When banana leaf samples were tested for BSMYV by PCR and RCA, BSMYV was confirmed in all banana plants showing symptoms including those were wilting and/or dying. The results from this research have provided several avenues for further research. By completely sequencing all variants of eBSOLV and eBSGFV and fully sequencing the eBSIMV and eBSMYV regions, episomal BSV�]specific primer sets for all eBSVs could potentially be designed that could avoid all integrants of that particular BSV species. Furthermore, the development of an infectious BSV clone will enable large numbers of BSVinfected plants to be generated for the further testing of the sensitivity of RCA compared to other more established assays such as PCR. The development of infectious clones also opens the possibility for virus induced gene silencing studies in banana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: HIV-1 Pr55gag virus-like particles (VLPs) expressed by baculovirus in insect cells are considered to be a very promising HIV-1 vaccine candidate, as they have been shown to elicit broad cellular immune responses when tested in animals, particularly when used as a boost to DNA or BCG vaccines. However, it is important for the VLPs to retain their structure for them to be fully functional and effective. The medium in which the VLPs are formulated and the temperature at which they are stored are two important factors affecting their stability. FINDINGS We describe the screening of 3 different readily available formulation media (sorbitol, sucrose and trehalose) for their ability to stabilise HIV-1 Pr55gag VLPs during prolonged storage. Transmission electron microscopy (TEM) was done on VLPs stored at two different concentrations of the media at three different temperatures (4[degree sign]C, --20[degree sign]C and -70[degree sign]C) over different time periods, and the appearance of the VLPs was compared. VLPs stored in 15% trehalose at -70[degree sign]C retained their original appearance the most effectively over a period of 12 months. VLPs stored in 5% trehalose, sorbitol or sucrose were not all intact even after 1 month storage at the temperatures tested. In addition, we showed that VLPs stored under these conditions were able to be frozen and re-thawed twice before showing changes in their appearance. Conclusions Although the inclusion of other analytical tools are essential to validate these preliminary findings, storage in 15% trehalose at -70[degree sign]C for 12 months is most effective in retaining VLP stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA) surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5) and a truncated form lacking the transmembrane domain (H5tr). The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The immunisation of chickens and mice with the candidate vaccines elicited HA-specific antibody responses. Conclusions We managed, after synthesis of two versions of a single gene, to produce by transient and transgenic expression in plants, two variants of a highly pathogenic avian influenza virus HA protein which could have vaccine potential. This is a proof of principle of the potential of plant-produced influenza vaccines as a feasible pandemic response strategy for South Africa and other developing countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), is the most significant infectious disease in psittacines. PBFD is thought to have originated in Australia but is now found worldwide; in Africa, it threatens the survival of the indigenous endangered Cape parrot and the vulnerable black-cheeked lovebird. We investigated the genetic diversity of putative BFDVs from southern Africa. Feathers and heparinized blood samples were collected from 27 birds representing 9 psittacine species, all showing clinical signs of PBFD. DNA extracted from these samples was used for PCR amplification of the putative BFDV coat protein (CP) gene. The nucleotide sequences of the CP genes of 19 unique BFDV isolates were determined and compared with the 24 previously described sequences of BFDV isolates from Australasia and America. Phylogenetic analysis revealed eight BFDV lineages, with the southern African isolates representing at least three distinctly unique genotypes; 10 complete genome sequences were determined, representing at least one of every distinct lineage. The nucleotide diversity of the southern African isolates was calculated to be 6.4% and is comparable to that found in Australia and New Zealand. BFDVs in southern Africa have, however, diverged substantially from viruses found in other parts of the world, as the average distance between the southern African isolates and BFDV isolates from Australia ranged from 8.3 to 10.8%. In addition to point mutations, recombination was found to contribute substantially to the level of genetic variation among BFDVs, with evidence of recombination in all but one of the genomes analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen. © 2008 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants - MSV subtypes A1 -A6 - causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR-restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A1-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A1 recombination. One of the intra-MSV-A1 recombinants, designated MSV-A1 UgIII, accounted for >60% of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species. © 2007 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geminivirus infectivity is thought to depend on interactions between the virus replication-associated proteins Rep or RepA and host retinoblastoma-related proteins (pRBR), which control cell-cycle progression. It was determined that the substitution of two amino acids in the Maize streak virus (MSV) RepA pRBR-interaction motif (LLCNE to LLCLK) abolished detectable RepA-pRBR interaction in yeast without abolishing infectivity in maize. Although the mutant virus was infectious in maize, it induced less severe symptoms than the wild-type virus. Sequence analysis of progeny viral DNA isolated from infected maize enabled detection of a high-frequency single-nucleotide reversion of C(601)A in the 3 nt mutated sequence of the Rep gene. Although it did not restore RepA-pRBR interaction in yeast, sequence-specific PCR showed that, in five out of eight plants, the C(601)A reversion appeared by day 10 post-inoculation. In all plants, the C(601)A revertant eventually completely replaced the original mutant population, indicating a high selection pressure for the single-nucleotide reversion. Apart from potentially revealing an alternative or possibly additional function for the stretch of DNA that encodes the apparently non-essential pRBR-interaction motif of MSV Rep, the consistent emergence and eventual dominance of the C(601)A revertant population might provide a useful tool for investigating aspects of MSV biology, such as replication, mutation and evolution rates, and complex population phenomena, such as competition between quasispecies and population turnover. © 2005 SGM.