90 resultados para Resolution in azimuth direction
Resumo:
The construction industry has long been burdened with inherent adversarial relationships among the parties and the resulting disputes. Dispute review boards (DRBs) have emerged as alternatives to settle construction-related disputes outside courts. Although DRBs have found support in some quarters of the construction industry, the quantitative assessment of the impact of DRBs has not been adequately addressed. This paper presents the results of a research project undertaken to assess the impact of DRBs on the construction program of a large-scale highway agency. Three dimensions of DRB impact were assessed: (1) influence on project cost and schedule performance, (2) effectiveness of DRBs in preventing and resolving construction disputes, and (3) costs of DRB implementation. The analyses encompass data from approximately 3,000 projects extending over a 10-year period (2000–2009). Quantitative measures of performance were developed and analyzed for each category. Projects that used DRBs faced reduced costs and schedule growth (6.88 and 12.92%, respectively) when compared to non-DRB projects (11.53 and 28.96%). DRBs were also found to be effective in avoiding and settling disputes; the number of arbitration cases reduced consistently after DRB implementation, and DRBs have a success rate of 97% in settling disputes for which DRBs were used. Moreover, costs of DRBs were found to comprise a relatively small fraction (i.e., approximately 0.3%) of total project budgets. It was concluded that DRBs were effective dispute prevention and resolution alternatives with no significant adverse effects on project performance.
Resumo:
Finite element models of bones can be created by deriving geometry from anx-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticityversus density relationship. Many elasticity–density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions – longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each directionwere determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined.A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.
Resumo:
This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.
Resumo:
Dodecylamine was successfully intercalated into the layer space of kaolinite by utilizing the methanol treated kaolinite–dimethyl sulfoxide (DMSO) intercalation complex as an intermediate. The basal spacing of kaolinite, measured by X-ray diffraction (XRD), increased from 0.72 nm to 4.29 nm after the intercalation of dodecylamine. Also, the significant variation observed in the Fourier Transform Infrared Spectroscopy (FTIR) spectra of kaolinite when intercalated with dodecylamine verified the feasibility of intercalation of dodecylamine into kaolinite. Isothermal-isobaric (NPT) molecular dynamics simulation with the use of Dreiding force field was performed to probe into the layering behavior and structure of nanoconfined dodecylamine in the kaolinite gallery. The concentration profiles of the nitrogen atom, methyl group and methylene group of intercalated dodecylamine molecules in the direction perpendicular to the kaolinite basal surface indicated that the alkyl chains within the interlayer space of kaolinite exhibited an obvious layering structure. However, the unified bilayer, pseudo-trilayer, or paraffin-type arrangements of alkyl chains deduced based on their chain length combined with the measured basal spacing of organoclays were not found in this study. The alkyl chains aggregated to a mixture of ordered paraffin-type-like structure and disordered gauche conformation in the middle interlayer space of kaolinite, and some alkyl chains arranged in two bilayer structures, in which one was close to the silica tetrahedron surface, and the other was close to the alumina octahedron surface with their alkyl chains parallel to the kaolinite basal surface.
Resumo:
The results of comprehensive experimental studies of the operation, stability, and plasma parameters of the low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal oscillating rf current are reported. The rf plasma is generated by using a custom-designed configuration of the internal rf coil that comprises two perpendicular sets of eight currents in each direction. Various diagnostic tools, such as magnetic probes, optical emission spectroscopy, and an rf-compensated Langmuir probe were used to investigate the electromagnetic, optical, and global properties of the argon plasma in wide ranges of the applied rf power and gas feedstock pressure. It is found that the uniformity of the electromagnetic field inside the plasma reactor is improved as compared to the conventional sources of inductively coupled plasmas with the external flat coil configuration. A reasonable agreement between the experimental data and computed electromagnetic field topography inside the chamber is reported. The Langmuir probe measurements reveal that the spatial profiles of the electron density, the effective electron temperature, plasma potential, and electron energy distribution/probability functions feature a high degree of the radial and axial uniformity and a weak azimuthal dependence, which is consistent with the earlier theoretical predictions. As the input rf power increases, the azimuthal dependence of the global plasma parameters vanishes. The obtained results demonstrate that by introducing the internal oscillated rf currents one can noticeably improve the uniformity of electromagnetic field topography, rf power deposition, and the plasma density in the reactor.
Resumo:
Introduction There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine. Intervertebral stapling is a leading method of fusionless corrective surgery. Although used for a number of years, there is limited evidence as to the effect these staples have on the stiffness of the functional spinal unit. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. This torque was found sufficient to achieve physiologically representative ranges of movement. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next a left anterolateral Shape Memory Alloy (SMA) staple was inserted (Medtronic Sofamor Danek, USA). Biomechanical testing was repeated as before with data collected from the tenth load cycle. Results In flexion/extension there was an insignificant drop in stiffness of 3% (p=0.478). In lateral bending there was a significant drop in stiffness of 21% (p<0.001). This was mainly in lateral bending away from the staple, where the stiffness reduced by 30% (p<0.001). This was in contrast to lateral bending towards the staple where it dropped by 12% which was still statistically significant (p=0.036). In axial rotation there was an overall near significant drop in stiffness of 11% (p=0.076). However, this was more towards the side of the staple measuring a decrease of 14% as opposed to 8% away from the staple. In both cases it was a statistically insignificant drop (p=0.134 and p=0.352 respectively). Conclusion Insertion of intervertebral SMA staples results in a significant reduction in motion segment stiffness in lateral bending especially in the direction away from the staple. The staple had less effect on axial rotation stiffness and minimal effect on flexion/extension stiffness.
Resumo:
Alternative dispute resolution, or ‘ADR’, is defined by the National Alternative Dispute Resolution Advisory Council as: … an umbrella term for processes, other than judicial determination, in which an impartial person assists those in a dispute to resolve the issues between them. ADR is commonly used as an abbreviation for alternative dispute resolution, but can also be used to mean assisted or appropriate dispute resolution. Some also use the term ADR to include approaches that enable parties to prevent or manage their own disputes without outside assistance. A broad range of ADR processes are used in legal practice contexts, including, for example, arbitration, conciliation, mediation, negotiation, conferencing, case appraisal and neutral evaluation. Hybrid processes are also used, such as med-arb in which the practitioner starts by using mediation, and then shifts to using arbitration. ADR processes generally fall into one of three general categories: facilitative, advisory or determinative. In a facilitative process, the ADR practitioner has the role of assisting the parties to reach a mutually agreeable outcome to the dispute by helping them to identify the issues in dispute, and to develop a range of options for resolving the dispute. Mediation and facilitated negotiation are examples of facilitative processes. ADR processes that are advisory involve the practitioner appraising the dispute, providing advice as to the facts of the dispute, the law and then, in some cases, articulating possible or appropriate outcomes and how they might be achieved. Case appraisal and neutral evaluation are examples of advisory processes. In a determinative ADR process, the practitioner evaluates the dispute (which may include the hearing of formal evidence from the parties) and makes a determination. Arbitration is an example of a determinative ADR process. The use of ADR processes has increased significantly in recent years. Indeed, in a range of contemporary legal contexts the use of an ADR process is now required before a party is able to file a matter in court. For example, Juliet Behrens discusses in Chapter 11 of this book how the Family Law Act 1975 (Cth) now effectively mandates attendance at pre-filing family dispute resolution in parenting disputes. At the state level, in Queensland, for example, attendance at a conciliation conference can be required in anti-discrimination matters, and is encouraged in residential tenancy matters, and in personal injuries matters the parties must attend a preliminary compulsory conference. Certain ADR processes are used more commonly in the resolution of particular disputes. For example, in family law contexts, mediation and conciliation are generally used because they provide the parties with flexibility in terms of process and outcome while still ensuring that the negotiations occur in a positive, structured and facilitated framework. In commercial contexts, arbitration and neutral evaluation are often used because they can provide the parties with a determination of the dispute that is factually and legally principled, but which is also private and more timely than if the parties went to court. Women, as legal personalities and citizens of society, can find themselves involved in any sort of legal dispute, and therefore all forms of ADR are relevant to women. Perhaps most commonly, however, women come into contact with facilitative ADR processes. For example, through involvement in family law disputes women will encounter family dispute resolution processes, such as mediation. In this chapter, therefore, the focus is on facilitative ADR processes and, particularly, issues for women in terms of their participation in such processes. The aim of this chapter is to provide legal practitioners with an understanding of issues for women in ADR to inform your approach to representing women clients in such processes, and to guide you in preparing women clients for their participation in ADR. The chapter begins with a consideration of the ways in which facilitative ADR processes are positive for women participants. Next, some of the disadvantages for women in ADR are explored. Finally, the chapter offers ways in which legal practitioners can effectively prepare women clients for participation in ADR. Before embarking on a discussion of issues for women in ADR, it is important to acknowledge that women’s experiences in these dispute resolution environments, whilst often sharing commonalities, are diverse and informed by a range of factors specific to each individual woman; for example, her race or socio-economic background. This discussion, therefore, addresses some common issues for women in ADR that are fundamentally gender based. It must be noted, however, that providing advice to women clients about participating in ADR processes requires legal practitioners to have a very good understanding of the client as an individual, and her particular needs and interests. Some sources of diversity are discussed in Chapters 13, 14 and 15.
Resumo:
Antenna arrays are groups of antenna elements spaced in a geometrical pattern. By changing the phase excitation of each element, the array is capable of transmitting electromagnetic waves strongly in a chosen direction with little or no radiation in another direction, thus controlling the array's radiation pattern without physically moving any parts. An antenna array of sub-arrays replaces conventional antenna elements with compact circular arrays with potential for improved performance. This thesis expands on the concept by exploring the development, realisation and operation of an array of subarrays. The overall size of the array essentially remains the same, but the array's performance is improved due to having steerable directive subarrays. The negative effects of strong mutual coupling between closely spaced elements of a subarray are analysed and a number of new solutions for element decoupling are proposed.
Resumo:
This submission focuses on the adverse effects that the Government’s proposals are likely to have on the legitimate use of copyright works. Copyright exists to support the production of new expression. Because new expression always builds on existing culture, any extension of copyright protection necessarily also increases the costs of creative expression. As a threshold matter, we do not believe that these further increases to the force of copyright law are justified. In recent years, the balance at the heart of copyright law has tipped too far in the direction of established producers and distributors, and now imposes unnecessary costs on ordinary creators. The available evidence does not support a further increase in the penalties and enforcement mechanisms available under copyright law.
Resumo:
The palette of fluorescent proteins (FPs) has grown exponentially over the past decade, and as a result, live imaging of cells expressing fluorescently tagged proteins is becoming more and more mainstream. Spinning disk confocal (SDC) microscopy is a high-speed optical sectioning technique and a method of choice to observe and analyze intracellular FP dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low-noise scientific grade-cooled charge-coupled device cameras, and can achieve frame rates of up to 1000 frames per second. In this chapter, we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy and provide a rationale for specific design choices. We also give guidelines of how other imaging techniques such as total internal reflection microscopy or spatially controlled photoactivation can be coupled with SDC imaging and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction.
Resumo:
When Professor N’Dri Assie-Lumumba asked me to reflect on what ‘ubuntu’ might mean in the context of education in the Caribbean, the first thing that came to mind was an image of pit latrines in impoverished primary schools in poor countries. In this essay, I argue that the continuing problem of pit latrines in these schools symbolizes the failure to solve the problem of poverty, neglect and inadequate provision of education services for people at the bottom rungs of Caribbean and other decolonising societies. I ask what implications the ‘ubuntu’ concept chosen for the 2015 CIES conference would have for reforming education in a direction that combines global reform, ethics and good sense. Educators rarely consider toilets when they are thinking about what is needed to reform the system. But talking about toilets draws attention to the entrenched inequity that persists in education systems across the globe – an inequity that forces many schools and young people to remain at the base of the social pyramid, and that perpetuates a dysfunctional model of education holding back many societies. Starting from the twin images of social pyramids and toilets, we can ask some pointed questions about education reform.
Resumo:
Research question / issue This paper frames the debate on corporate governance convergence in terms of the morality underlying corporate governance models. The claims and arguments of moral relativism are presented to provide theoretical structure to the moral aspects of corporate governance convergence, and ultimately the normative question of whether convergence should occur. Research findings / insights: The morality underlying different models of corporate governance has largely been ignored in the corporate governance convergence literature. A range of moral philosophies and principles that underlie the dominant corporate governance models are identified. This leads to a consideration of the claims and arguments of moral relativism relating to corporate governance. A research agenda around the claims of Descriptive and Metaethical moral relativism, and which ultimately informs the associated normative argument, is then suggested. Theoretical / Academic implications The application of moral relativism to the debate on corporate governance convergence presents a theoretical structure to the analysis and consideration of its moral aspects. This structure lends itself to further research, both empirical and conceptual. Practitioner / Policy implications The claims and arguments of moral relativism provide a means of analysing calls that are made for a culturally or nationally ‘appropriate’ model of corporate governance. This can assist in providing direction for corporate governance reforms and is of particular relevance for developing countries which have inherited Western corporate governance models through colonialism.
Resumo:
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.
Resumo:
Background: More than half of all cerebral ischemic events are the result of rupture of extracranial plaques. The clinical determination of carotid plaque vulnerability is currently based solely on luminal stenosis; however, it has been increasingly suggested that plaque morphology and biomechanical stress should also be considered. We used finite element analysis based on in vivo magnetic resonance imaging (MRI) to simulate the stress distributions within plaques of asymptomatic and symptomatic individuals. Methods: Thirty nonconsecutive subjects (15 symptomatic and 15 asymptomatic) underwent high-resolution multisequence in vivo MRI of the carotid bifurcation. Stress analysis was performed based on the geometry derived from in vivo MRI of the carotid artery at the point of maximal stenosis. The finite element analysis model considered plaque components to be hyperelastic. The peak stresses within the plaques of symptomatic and asymptomatic individuals were compared. Results: High stress concentrations were found at the shoulder regions of symptomatic plaques, and the maximal stresses predicted in this group were significantly higher than those in the asymptomatic group (508.2 ± 193.1 vs 269.6 ± 107.9 kPa; P = .004). Conclusions: Maximal predicted plaque stresses in symptomatic patients were higher than those predicted in asymptomatic patients by finite element analysis, suggesting the possibility that plaques with higher stresses may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, biomechanical stress analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma. It may help in the identification of patients with asymptomatic carotid atheroma at greatest risk of developing symptoms or mild-to-moderate symptomatic stenoses, which currently fall outside current clinical guidelines for intervention.
Resumo:
The paper presents a geometry-free approach to assess the variation of covariance matrices of undifferenced triple frequency GNSS measurements and its impact on positioning solutions. Four independent geometryfree/ ionosphere-free (GFIF) models formed from original triple-frequency code and phase signals allow for effective computation of variance-covariance matrices using real data. Variance Component Estimation (VCE) algorithms are implemented to obtain the covariance matrices for three pseudorange and three carrier-phase signals epoch-by-epoch. Covariance results from the triple frequency Beidou System (BDS) and GPS data sets demonstrate that the estimated standard deviation varies in consistence with the amplitude of actual GFIF error time series. The single point positioning (SPP) results from BDS ionosphere-free measurements at four MGEX stations demonstrate an improvement of up to about 50% in Up direction relative to the results based on a mean square statistics. Additionally, a more extensive SPP analysis at 95 global MGEX stations based on GPS ionosphere-free measurements shows an average improvement of about 10% relative to the traditional results. This finding provides a preliminary confirmation that adequate consideration of the variation of covariance leads to the improvement of GNSS state solutions.