184 resultados para Rear seat occupants.
Resumo:
Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.
Resumo:
This paper presents a review of studies on natural convection heat transfer in the triangular enclosure namely, in attic-shaped space. Much research activity has been devoted to this topic over the last three decades with a view to providing thermal comfort to the occupants in attic-shaped buildings and to minimising the energy costs associated with heating and air-conditioning. Two basic thermal boundary conditions of attic are considered to represent hot and cold climates or day and night time. This paper also reports on a significant number of studies which have been performed recently on other topics related to the attic space, for example, attics subject to localized heating and attics filled with porous media.
Resumo:
It has been argued that the origins of modern creative industries policies can be found in Australia. The Creative Nation national cultural policy statement released by the Labor government headed by the Prime Minister Paul Keating in 1994 sought an original synthesis of arts and media policies that was outwardly looking, identifying the opportunities presented by what were then new digital media technologies, and clearly stated the economic opportunities presented by promotion of what were referred to at the time as the cultural industries. Several commentators have identified the influence that Creative Nation had on the Blair Labour government when it came to power in the United Kingdom in 1997. Faced with the question of how to revitalise the once-mighty industrial cities of the U.K. after the Conservative government, the Department of Culture, Media and Sport drew upon policy documents such as Australia’s Creative Nation, as well as the experience of local governments in these cities, in looking to the cultural sectors to spearhead new jobs growth, as well as re-branding the cities as cultural or creative cities in a post-industrial economic landscape. This growing alignment of culture and economics, that has been a characteristic of creative industries policies as they have developed in Australia, Britain, East Asia and Europe, marks an interesting shift in the traditional focus of arts and cultural policy as compensatory to the economic domain. The first Chair of what would become the Arts Council of Great Britain (now the Arts Council of England) was the famous economist John Maynard Keynes. In the First Annual Report of the Arts Council for 1945-1946, prepared in the latter stages of the Second World War, Keynes proposed that “the day is not far off when the economic problem will take the back seat where it belongs, and the arena of the heart and the head will be occupied or reoccupied, by our real problems — the problems of life and of human relations, of creation and behaviour and religion”. 中文摘要 1994年工黨執政時期澳洲總理基挺(Paul Keating)發表創意的國家(The Creative Nation)的文化政策聲明堪稱是澳洲現代創意產業的起源,該聲明試圖將藝術與媒體政策結合在一起,其目的在面向海外,為新數位媒體技術尋找機會。聲明中明確指出要推動文化產業為經濟帶來機會。「文化政策也是經濟政策。文化創造財富與附加價值,對創新、行銷與設計有重要貢獻,是我們工業的標誌(badge)。我們創意的層次實際上決定了我們適應新經濟imperatives的能力。文化本身就是項重要出口,是其他產品出口的主要附件(essential accompaniment)。文化吸引觀光與學生,也是我們經濟成功之關鍵。」 創意產業的策略是構建藝術、媒體與資訊電信科技的網絡以利文化產業在國家創新政策策略中擁有一席之地。此一策略最早是由1990年代末英國布萊爾(Tony Blair)的新工黨政府所採行,其後歐洲聯盟、澳洲、紐西蘭、新加坡、台灣、南韓與中國。
Resumo:
Objective Harassment from motorists is a major constraint on cycling that has been under-researched. We examined incidence and correlates of harassment of cyclists. Methods Cyclists in Queensland, Australia were surveyed in 2009 about their experiences of harassment while cycling, from motor vehicle occupants. Respondents also indicated the forms of harassment they experienced. Logistic regression modeling was used to examine gender and other correlates of harassment. Results Of 1830 respondents, 76% of men and 72% of women reported harassment in the previous 12 months. The most reported forms of harassment were driving too close (66%), shouting abuse (63%), and making obscene gestures/sexual harassment (45%). Older age, overweight/obesity, less cycling experience (< 2 years) and less frequent cycling (< 3 days/week) were associated with less likelihood of harassment, while living in highly advantaged areas (SEIFA deciles 8 or 9), cycling for recreation, and cycling for competition were associated with increased likelihood of harassment. Gender was not associated with reports of harassment. Conclusions Efforts to decrease harassment should include a closer examination of the circumstances that give rise to harassment, as well as fostering road environments and driver attitudes and behaviors that recognize that cyclists are legitimate road users.
Resumo:
It was reported that the manuscript of Crash was returned to the publisher with a note reading ‘The author is beyond psychiatric help’. Ballard took the lay diagnosis as proof of complete artistic success. Crash conflates the Freudian tropes of libido and thanatos, overlaying these onto the twentieth century erotic icon, the car. Beyond mere incompetent adolescent copulatory fumblings in the back seat of the parental sedan or the clichéd phallic locomotor of the mid-life Ferrari, Ballard engages the full potentialities of the automobile as the locus and sine qua non of a perverse, though functional erotic. ‘Autoeroticism’ is transformed into automotive, traumatic or surgical paraphilia, driving Helmut Newton’s insipid photo-essays of BDSM and orthopædics into an entirely new dimension, dancing precisely where (but more crucially, because) the ‘body is bruised to pleasure soul’. The serendipity of quotidian accidental collisions is supplanted, in pursuit of the fetishised object, by contrived (though not simulated) recreations of iconographic celebrity deaths. Penetration remains as a guiding trope of sexuality, but it is confounded by a perversity of focus. Such an obsessive pursuit of this autoerotic-as-reality necessitates the rejection of the law of human sexual regulation, requiring the re-interpretation of what constitutes sex itself by looking beyond or through conventional sexuality into Ballard’s paraphiliac and nightmarish consensual Other. This Other allows for (if not demands) the tangled wreckage of a sportscar to function as a transformative sexual agent, creating, of woman, a being of ‘free and perverse sexuality, releasing within its dying chromium and leaking engine-parts, all the deviant possibilities of her sex’.
Resumo:
QUT's Centre for Subtropical Design (CSD) partnered with a major developer to bring together some of Brisbane’s most experienced and creative architects and designers in a two-day intensive design charrette to propose innovative design strategies for naturally-ventilated high rise residential buildings. An inner-urban renewal site in Queensland’s capital city Brisbane gave four multi-disciplinary teams the opportunity to address a raft of issues that developers and consultants will confront more and more in the future in warm humid climates. The quest to release apartment dwellers from dependence on energy-hungry air-conditioning and artificial lighting was central to the design brief for the towers. Mentored by Richard Hassell of WOHA, the creative teams focussed on climate-responsive design principles for passive climate control including orientation, cross-ventilation and outdoor living in order to reduce greenhouse gas emissions and offset occupants rising energy costs. This article discusses how outcomes of the charrette take their cue from the city’s subtropical climate and demonstrate how high-density high-rise living can be attractive, affordable and sustainable through positive engagement with the subtropical climate’s natural attributes.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
Current urban development in South East Queensland (SEQ) is impacted by a number of factors: growth and sprawl eroding subtropical character and identity; changing demographics and housing needs; lack of developable land; rising transport costs; diminishing fresh water supply; high energy consumption; and generic building designs which ignore local climate, landscape and lifestyle conditions. The Subtropical Row House project sought to research ‘best practice’ planning and design for contemporary and future needs for urban development in SEQ, and stimulate higher-density housing responses that achieve sustainable, low-energy and low water outcomes and support subtropical character and identity by developing a workable new typology for homes that the local market can adopt. The methodology was that of charrette, an established methodology in architecture and design. Four leading Queensland architectural firms were invited to form multidisciplinary creative teams. During the two-day charrette, the teams visited a selected greenfield site, defined the problems and issues, developed ideas and solutions, and benchmarked performance of designs using the Australian Green Building Council’s Pilot Green Star Multi-Unit residential tool. Each of the four resulting designs simultaneously express a positive relationship with climate and place by demonstrating: suitability for the subtropical climate; flexibility for a diversity of households; integrated building/site/vegetation strategies; market appeal to occupants and developers; affordability in operation; constructability by ‘domestic’ builders; and reduced energy, water and wastage. The project was awarded a Regional Commendation by the Australian Institute of Architects.
Resumo:
Occupant injury comprises the largest proportion of child road crash trauma in most highly motorised countries. In Australia, road crashes are the primary cause of death for children aged 1-14 years and are among the top three causes of serious injury to this age group. For this reason considerable research attention has been focused on understanding the contributing factors and the most effective ways of improving children’s safety as car passengers. Australia has been particularly active in this area, with well regarded work being conducted on levels of use of dedicated child restraints, restraint crash performance in laboratory conditions, examination of real world restraint crash performance (case review), and studies of psychosocial factors influencing perceptions about restraints and their use (Brown & Bilston, 2006; Brown, McCaskill, Henderson & Bilston, 2006; Edwards, Anderson & Hutchinson, 2006; Lennon, 2005, 2007). New legislation for the restraint of children as vehicle passengers was enacted in Queensland in March 2010. This new legislation recognises the importance of dedicated restraint use for children up to at least age 7 years and the protective benefits of rear seating position in the event of a crash. As part of improving children’s safety and addressing key priority areas, the Queensland Injury Prevention Council (QIPC) and Department of Transport and Main Roads (TMR) commissioned the Centre for Accident Research and Road Safety, Queensland (CARRS-Q) to evaluate the impact of the new legislation. Although at the time of commencing the research the legislation had only been in force for 14 months, it was deemed critical to review its effectiveness in guiding parental choices and compliance in order to inform the design and focus of further supporting initiatives and interventions. Specifically, the research sought clear evidence of exactly what impact, if any, the legislation has had on compliance levels and what difficulties (if any) parents/carers experience in relation to interpreting as well as complying with the requirements of the new law. Knowledge about these barriers or difficulties will allow any future changes or improvements to the legislation to address such barriers and thus improve its effectiveness. Moreover, better information about how the legislation has affected parents will provide a basis to plan non-legislative comprehensive multi-strategy interventions such as community, educational or behavioural interventions with parents/carers and other stakeholder groups. In addition, it will allow identification of the most effective aspects of the legislation and those areas in need of extra attention to improve effectiveness/compliance and thus better protect children travelling in cars and improve their health and safety. This report presents the findings from the four components of the research: the literature review; observational study; intercept interviews and focus group with parents; and the interviews with key stakeholders.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
In recent years, car club and racing websites and forums have become an increasingly popular way for car enthusiasts to access racing and car club news, chat-rooms and message boards. However, no North American research has been found that has examined opinions and driving experiences of car and racing enthusiasts. The purpose of this study was to examine car club members’ opinions about and experiences with various aspects of driving, road safety and traffic legislation, with a particular focus on street racing. A web-based questionnaire (Survey Monkey) was developed using the expert panel method and was primarily based on validated instruments or questions that were developed from other surveys. The questionnaire included: 1) driver concerns regarding traffic safety issues and legislation; 2) attitudes regarding various driving activities; 3) leisure-time activities, including club activities; 4) driving experiences, including offences and collisions; and 5) socio-demographic questions. The survey was pre- tested and piloted. Electronic information letters were sent out to an identified list of car clubs and forums situated in southern Ontario. Car club participants were invited to fill out the questionnaire. This survey found that members of car clubs share similar concerns regarding various road safety issues with samples of Canadian drivers, although a smaller percentage of car club members are concerned about speeding-related driving. Car club members had varied opinions regarding Ontario’s Street Racers, Stunt and Aggressive Drivers Legislation. The respondents agreed the most with the new offences regarding not sitting in the driver’s seat, having a person in the trunk, or driving as close as possible to another vehicle, pedestrian or object on or near the highway without a reason. The majority disagreed with police powers of impoundment and on-the-spot licence suspensions. About three quarters of respondents reported no collisions or police stops for traffic offences in the past five years. Of those who had been stopped, the most common offence was reported as speeding. This study is the first in Canada to examine car club members’ opinions about and experiences with various aspects of driving, road safety and traffic legislation. Given the ubiquity of car clubs and fora in Canada, insights on members’ opinions and practices provide important information to road safety researchers.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
Observational seatbelt wearing studies are a valuable tool for obtaining up-to-date information about rates of use. Given that one quarter of vehicle occupants killed on Queensland roads in recent years were not wearing seatbelts, it is important that authorities are able to identify non-wearers and take steps to increase compliance with seatbelt laws to reduce the severity of crashes and, therefore, the road toll. An observational study of seatbelt use was conducted in metropolitan, regional and rural locations throughout Queensland in May and June, 2010. Trained observers took note of seatbelt use of all occupants of passenger vehicles, noting their gender, approximate age group, seating position, vehicle type, licence type (i.e. visible L or P plates), mobile phone use, and the date, time and location of the observation. Of 19,579 observations, 99.04% (19,391) of occupants were observed wearing seatbelts, as only 0.96% of occupants (188) were not wearing a seatbelt. There were differences in seatbelt wearing rates for a number of study variables, although most were very small. However, seatbelt wearing rates were 3.84% lower for drivers observed using a mobile phone than for those who were not. While compliance with seatbelt laws seems to be very high, it is still concerning that so few non-wearers represent a disproportionately large proportion of road fatalities and serious injuries in Queensland. Road safety authorities must therefore continue to find ways to improve seatbelt use, as small gains in wearing rates will translate into significant fatality reductions.