115 resultados para Random Forests Classifier
Resumo:
Historically, it appears that some of the WRCF have survived because i) they lack sufficient quantity of commercially valuable species; ii) they are located in remote or inaccessible areas; or iii) they have been protected as national parks and sanctuaries. Forests will be protected when people who are deciding the fate of forests conclude than the conservation of forests is more beneficial, e.g. generates higher incomes or has cultural or social values, than their clearance. If this is not the case, forests will continue to be cleared and converted. In the future, the WRCF may be protected only by focused attention. The future policy options may include strategies for strong protection measures, the raising of public awareness about the value of forests, and concerted actions for reducing pressure on forest lands by providing alternatives to forest exploitation to meet the growing demands of forest products. Many areas with low population densities offer an opportunity for conservation if appropriate steps are taken now by the national governments and international community. This opportunity must be founded upon the increased public and government awareness that forests have vast importance to the welfare of humans and ecosystems' services such as biodiversity, watershed protection, and carbon balance. Also paramount to this opportunity is the increased scientific understanding of forest dynamics and technical capability to install global observation and assessment systems. High-resolution satellite data such as Landsat 7 and other technologically advanced satellite programs will provide unprecedented monitoring options for governing authorities. Technological innovation can contribute to the way forests are protected. The use of satellite imagery for regular monitoring and Internet for information dissemination provide effective tools for raising worldwide awareness about the significance of forests and intrinsic value of nature.
Resumo:
Natural landscapes are increasingly subjected to anthropogenic pressure and fragmentation resulting in reduced ecological condition. In this study we examined the relationship between ecological condition and the soundscape in fragmented forest remnants of south-east Queensland, Australia. The region is noted for its high biodiversity value and increased pressure associated with habitat fragmentation and urbanisation. Ten sites defined by a distinct open eucalypt forest community dominated by spotted gum (Corymbia citriodora ssp. variegata) were stratified based on patch size and patch connectivity. Each site underwent a series of detailed vegetation condition and landscape assessments, together with bird surveys and acoustic analysis using relative soundscape power. Univariate and multivariate analyses indicated that the measurement of relative soundscape power reflects ecological condition and bird species richness, and is dependent on the extent of landscape fragmentation. We conclude that acoustic monitoring technologies provide a cost effective tool for measuring ecological condition, especially in conjunction with established field observations and recordings.
Resumo:
Robust facial expression recognition (FER) under occluded face conditions is challenging. It requires robust algorithms of feature extraction and investigations into the effects of different types of occlusion on the recognition performance to gain insight. Previous FER studies in this area have been limited. They have spanned recovery strategies for loss of local texture information and testing limited to only a few types of occlusion and predominantly a matched train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to extract a set of Gabor based part-face templates from gallery images and converts these templates into template match distance features. The resulting feature vectors are robust to occlusion because occluded parts are covered by some but not all of the random templates. The method is evaluated using facial images with occluded regions around the eyes and the mouth, randomly placed occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects of such occlusion. Overall recognition performance and the performance for each facial expression are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the high robustness and fast processing speed of our approach, and provide useful insight into the effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of robustness of the approach to changes in the orientation and scale of Gabor filters, the size of templates, and occlusions ratios. Performance comparisons with previous approaches show that the proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of eyes or mouth.
Resumo:
Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.
Resumo:
Aim Our aim was to clarify the lineage-level relationships for Melomys cervinipes and its close relatives and investigate whether the patterns of divergence observed for these wet-forest-restricted mammals may be associated with recognized biogeographical barriers. Location Mesic closed forest along the east coast of Australia, from north Queensland to mid-eastern New South Wales. Methods To enable rigorous phylogenetic reconstruction, divergence-date estimation and phylogeographical inference, we analysed DNA sequence and microsatellite data from 307 specimens across the complete distribution of M. cervinipes (45 localities). Results Three divergent genetic lineages were found within M. cervinipes, corresponding to geographically delineated northern, central and southern clades. Additionally, a fourth lineage, comprising M. rubicola and M. capensis, was identified and was most closely related to the northern M. cervinipes lineage. Secondary contact of the northern and central lineages was identified at one locality to the north of the Burdekin Gap. Main conclusions Contemporary processes of repeated habitat fragmentation and contraction, local extinction events and subsequent re-expansion across both small and large areas, coupled with the historical influence of the Brisbane Valley Barrier, the St Lawrence Gap and the Burdekin Gap, have contributed to the present phylogeographical structure within M. cervinipes. Our study highlights the need to sample close to the periphery of putative biogeographical barriers or risk missing vital phylogeographical information that may significantly alter the interpretation of biogeographical hypotheses.
Resumo:
This article quantifies the effect of the operating pressure of the H 2 + C 2H 4 gas mixture on the current density and threshold voltage of the electron emission from dense forests of multiwalled carbon nanotubes synthesized using thermal catalytic Chemical Vapor Deposition under near atmospheric pressure process conditions. The results suggest that in the pressure range of interest 400-700 Torr the field emission properties can be substantially improved by operating the process at lower gas pressures when the nanostructure aspect ratios are higher. The obtained threshold voltage ∼1.75 V/μm and the emission current densities ∼10 mA/cm 2 offer competitive advantages compared with the results reported by other authors. Copyright
Resumo:
We ascertained villagers’ perceptions about the importance of forests for their livelihoods and health through 1,837 reliably answered interviews of mostly male respondents from 185 villages in Indonesian and Malaysian Borneo. Variation in these perceptions related to several environmental and social variables, as shown in classification and regression analyses. Overall patterns indicated that forest use and cultural values are highest among people on Borneo who live close to remaining forest, and especially among older Christian residents. Support for forest clearing depended strongly on the scale at which deforestation occurs. Deforestation for small-scale agriculture was generally considered to be positive because it directly benefits people’s welfare. Large-scale deforestation (e.g., for industrial oil palm or acacia plantations), on the other hand, appeared to be more context-dependent, with most respondents considering it to have overall negative impacts on them, but with people in some areas considering the benefits to outweigh the costs. The interviews indicated high awareness of negative environmental impacts of deforestation, with high levels of concern over higher temperatures, air pollution and loss of clean water sources. Our study is unique in its geographic and trans-national scale. Our findings enable the development of maps of forest use and perceptions that could inform land use planning at a range of scales. Incorporating perspectives such as these could significantly reduce conflict over forest resources and ultimately result in more equitable development processes.
Resumo:
In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0⩽trandom collection of functions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as where fsi(·)'s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali–Sidney scheme is a special case of this general construction. We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.
Resumo:
In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0 ≤ t < u ≤ n. The idea behind the Micali-Sidney scheme is to generate and distribute secret seeds S = s1, . . . , sd of a poly-random collection of functions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as where f s i (·)’s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali-Sidney scheme is a special case of this general construction.We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.
Resumo:
This study analyses and compares the cost efficiency of Japanese steam power generation companies using the fixed and random Bayesian frontier models. We show that it is essential to account for heterogeneity in modelling the performance of energy companies. Results from the model estimation also indicate that restricting CO2 emissions can lead to a decrease in total cost. The study finally discusses the efficiency variations between the energy companies under analysis, and elaborates on the managerial and policy implications of the results.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.