399 resultados para Radon transform
Resumo:
Intuitively, any `bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distri- butions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
This thesis is a study of naturally occurring radioactive materials (NORM) activity concentration, gamma dose rate and radon (222Rn) exhalation from the waste streams of large-scale onshore petroleum operations. Types of activities covered included; sludge recovery from separation tanks, sludge farming, NORM storage, scaling in oil tubulars, scaling in gas production and sedimentation in produced water evaporation ponds. Field work was conducted in the arid desert terrain of an operational oil exploration and production region in the Sultanate of Oman. The main radionuclides found were 226Ra and 210Pb (238U - series), 228Ra and 228Th (232Th - series), and 227Ac (235U - series), along with 40K. All activity concentrations were higher than the ambient soil level and varied over several orders of magnitude. The range of gamma dose rates at a 1 m height above ground for the farm treated sludge had a range of 0.06 0.43 µSv h 1, and an average close to the ambient soil mean of 0.086 ± 0.014 µSv h 1, whereas the untreated sludge gamma dose rates had a range of 0.07 1.78 µSv h 1, and a mean of 0.456 ± 0.303 µSv h 1. The geometric mean of ambient soil 222Rn exhalation rate for area surrounding the sludge was mBq m 2 s 1. Radon exhalation rates reported in oil waste products were all higher than the ambient soil value and varied over three orders of magnitude. This study resulted in some unique findings including: (i) detection of radiotoxic 227Ac in the oil scales and sludge, (ii) need of a new empirical relation between petroleum sludge activity concentrations and gamma dose rates, and (iii) assessment of exhalation of 222Rn from oil sludge. Additionally the study investigated a method to determine oil scale and sludge age by the use of inherent behaviour of radionuclides as 228Ra:226Ra and 228Th:228Ra activity ratios.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
The TraSe (Transform-Select) algorithm has been developed to investigate the morphing of electronic music through automatically applying a series of deterministic compositional transformations to the source, guided towards a target by similarity metrics. This is in contrast to other morphing techniques such as interpolation or parameters or probabilistic variation. TraSe allows control over stylistic elements of the music through user-defined weighting of numerous compositional transformations. The formal evaluation of TraSe was mostly qualitative and occurred through nine participants completing an online questionnaire. The music generated by TraSe was generally felt to be less coherent than a human composed benchmark but in some cases judged as more creative.
Resumo:
Cultural objects are increasingly generated and stored in digital form, yet effective methods for their indexing and retrieval still remain an important area of research. The main problem arises from the disconnection between the content-based indexing approach used by computer scientists and the description-based approach used by information scientists. There is also a lack of representational schemes that allow the alignment of the semantics and context with keywords and low-level features that can be automatically extracted from the content of these cultural objects. This paper presents an integrated approach to address these problems, taking advantage of both computer science and information science approaches. We firstly discuss the requirements from a number of perspectives: users, content providers, content managers and technical systems. We then present an overview of our system architecture and describe various techniques which underlie the major components of the system. These include: automatic object category detection; user-driven tagging; metadata transform and augmentation, and an expression language for digital cultural objects. In addition, we discuss our experience on testing and evaluating some existing collections, analyse the difficulties encountered and propose ways to address these problems.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.
Resumo:
In this study, biometric and structural engineering tool have been used to examine a possible relationship within Chuaria–Tawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of Chuaria–Tawuia complex. Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to Chuaria–Tawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria. The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.
Resumo:
Digital forensics investigations aim to find evidence that helps confirm or disprove a hypothesis about an alleged computer-based crime. However, the ease with which computer-literate criminals can falsify computer event logs makes the prosecutor's job highly challenging. Given a log which is suspected to have been falsified or tampered with, a prosecutor is obliged to provide a convincing explanation for how the log may have been created. Here we focus on showing how a suspect computer event log can be transformed into a hypothesised actual sequence of events, consistent with independent, trusted sources of event orderings. We present two algorithms which allow the effort involved in falsifying logs to be quantified, as a function of the number of `moves' required to transform the suspect log into the hypothesised one, thus allowing a prosecutor to assess the likelihood of a particular falsification scenario. The first algorithm always produces an optimal solution but, for reasons of efficiency, is suitable for short event logs only. To deal with the massive amount of data typically found in computer event logs, we also present a second heuristic algorithm which is considerably more efficient but may not always generate an optimal outcome.
Resumo:
Employing multilevel inverters is a proper solution to reduce harmonic content of output voltage and electromagnetic interference in high power electronic applications. In this paper, a new pulse width modulation method for multilevel inverters is proposed in which power devices’ on-off switching times have been considered. This method can be surveyed in order to analyse the effect of switching time on harmonic contents of output voltage in high frequency applications when a switching time is not negligible compared to a switching cycle. Fast Fourier transform calculation and analysis of output voltage waveforms and harmonic contents with regard to switching time variation are presented in this paper for a single phase (3, 5)-level inverters used in high voltage and high frequency converters. Mathematical analysis and MATLAB simulation results have been carried out to validate the proposed method.
Resumo:
The wavelet packet transform decomposes a signal into a set of bases for time–frequency analysis. This decomposition creates an opportunity for implementing distributed data mining where features are extracted from different wavelet packet bases and served as feature vectors for applications. This paper presents a novel approach for integrated machine fault diagnosis based on localised wavelet packet bases of vibration signals. The best basis is firstly determined according to its classification capability. Data mining is then applied to extract features and local decisions are drawn using Bayesian inference. A final conclusion is reached using a weighted average method in data fusion. A case study on rolling element bearing diagnosis shows that this approach can greatly improve the accuracy ofdiagno sis.
Resumo:
Because aesthetics can have a profound effect upon the human relationship to the non-human environment the importance of aesthetics to ecologically sustainable designed landscapes has been acknowledged. However, in recognition that the physical forms of designed landscapes are an expression of the social values of the time, some design professionals have called for a new aesthetic ― one that reflects these current ecological concerns. To address this, some authors have suggested various theoretical design frameworks upon which such an aesthetic could be based. Within these frameworks there is an underlying theme that the patterns and processes of natural systems have the potential to form a new aesthetic for landscape design —an aesthetic based on fractal rather than Euclidean geometry. Perry, Reeves and Sim (2008) have shown that it is possible to differentiate between different landscape forms by fractal analysis. However, this research also shows that individual scenes from within very different landscape forms can possess the same fractal properties. Early data, revealed by transforming landscape images from the spatial to the frequency domain, using the fast Fourier transform, suggest that fractal patterning can have a significant effect within the landscape. In fact, it may be argued that any landscape design that includes living processes will include some design element whose ultimate form can only be expressed through the mathematics of fractal geometry. This paper will present ongoing research into the potential role of fractal geometry as a basis for a new form language – a language that may articulate an aesthetic for landscape design that echoes our ecological awakening.
Resumo:
The rationale for the present study was to develop porous CaP/silk composite scaffolds with a CaP-phase distribution and pore architecture better suited to facilitate osteogenic properties of human bone mesenchymal stromal cells (BMSCs) and in vivo bone formation abilities. This was achieved by first preparing CaP/silk hybrid powders which were then incorporated into silk to obtain uniform CaP/silk composite scaffolds, by means of a freeze-drying method. The composition, microstructure and mechanical properties of the CaP/silk composite scaffolds were ascertained by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), scanning electron microscope (SEM) and a universal mechanical testing machine. BMSCs were cultured in these scaffolds and cell proliferation analyzed by confocal microscopy and MTS assay. Alkaline phosphatase (ALP) activity and osteogenic gene expression were assayed to determine if osteogenic differentiation had taken place. A calvarial defect model in SCID mice was used to determine the in vivo bone forming ability of the hybrid CaP/silk scaffolds. Our results showed that incorporating the hybrid CaP/silk powders into silk scaffolds improved both pore structure architecture and distribution of CaP powders in the composite scaffolds. By incorporating the CaP phase into silk scaffolds in vitro osteogenic differentiation of BMSCs was enhanced and there was increased in vivo cancellous bone formation. Here we report a method with which to prepare Ca/P composite scaffolds with a pore structure and Ca/P distribution better suited to facilitate BMSC differentiation and bone formation.