163 resultados para RAY SOLUTION SCATTERING
Resumo:
Racism in education is one of the key issues facing schools, communities and the nation. Racism is about the exercise of power by individuals, groups and communities against each other. Whatever form it takes, racism has great potential to hurt and to harm. This book tells a series of stories from 11 very different government and non-government schools in Queensland. These stories show the positive measures that are being taken in schools to promote harmony, respect, understanding and fairness between school members, and with people in the community. The stories offer a simple lesson: solutions to racism must be local solutions. They must be culturally appropriate and relevant to specific communities. There is no single solution. However, this book shows that, through a mixture of strategies, students, teachers, schools and communities can make a difference, influencing the school and community culture and improving the educational outcomes and life chances of students of diverse backgrounds.
Resumo:
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. The nature of such forces is important to understand in order to manipulate the aggregate structure for applications such as settling and dewatering. A parallel particle orientation is required when conducting force measurements acting between the basal planes of clay mineral platelets using atomic force microscopy (AFM). In order to prepare a film of clay particles with the optimal orientation for conducting AFM measurements, the influences of particle concentration in suspension, suspension pH and particle size on the clay platelet orientation were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. From these investigations, we conclude that high clay (dry mass) concentrations and larger particle diameters (up to 5 µm) in suspension result in random orientation of platelets on the substrate. The best possible laminar orientation in the clay dried film as represented in the XRD by the 001/020 intensity ratio of more than 150 and by SE micrograph assessments, was obtained by drying thin layers from 0.2 wt% of -5 µm clay suspensions at pH 10.5. These dried films are stable and suitable for close-approach AFM studies in solution.
Resumo:
We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.
Resumo:
The Streaming SIMD extension (SSE) is a special feature embedded in the Intel Pentium III and IV classes of microprocessors. It enables the execution of SIMD type operations to exploit data parallelism. This article presents improving computation performance of a railway network simulator by means of SSE. Voltage and current at various points of the supply system to an electrified railway line are crucial for design, daily operation and planning. With computer simulation, their time-variations can be attained by solving a matrix equation, whose size mainly depends upon the number of trains present in the system. A large coefficient matrix, as a result of congested railway line, inevitably leads to heavier computational demand and hence jeopardizes the simulation speed. With the special architectural features of the latest processors on PC platforms, significant speed-up in computations can be achieved.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III class of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving power systems network equations with SSE and discuss advantages and disadvantages of this approach.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III and IV classes of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving linear systems with SSE and discuss advantages and disadvantages of this approach based on our experimental study.
Resumo:
The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.
Resumo:
Office building retrofit projects are increasingly more intensified as existing buildings are aging. At the same time, building owners and occupants are looking for environmentally sustainable products. These retrofit projects usually take place in center business district (CBDs) with on-site waste becoming one of the critical issues. Small and Medium Enterprises (SMEs) carry out most of the work in retrofit projects as subcontractors. Despite their large involvement, they often do not have adequate resources to deal with the specific technical challenges and project risks related to waste. Few research has been done on their performance of waste management operations. This paper identifies characteristics of on-site waste in office building retrofit projects. It examines the specific requirements for contractors to manage waste in the projects before exploring the existing performance of SMEs. By comparing requirements for SMEs and their potential areas for improvement, a framework is established for performance promotion of SMEs in on-site waste management of office building retrofit projects. The paper will raise the consciousness and commitment of SMEs as sub-contractors to waste management. It also explores ways of supporting SMEs for experience accumulation, performance promotion and project culture establishment towards effective and efficient on-site waste management in the growing sector of office building retrofit and upgrade.
Resumo:
The Streaming SIMD extension (SSE) is a special feature that is available in the Intel Pentium III and P4 classes of microprocessors. As its name implies, SSE enables the execution of SIMD (Single Instruction Multiple Data) operations upon 32-bit floating-point data therefore, performance of floating-point algorithms can be improved. In electrified railway system simulation, the computation involves the solving of a huge set of simultaneous linear equations, which represent the electrical characteristic of the railway network at a particular time-step and a fast solution for the equations is desirable in order to simulate the system in real-time. In this paper, we present how SSE is being applied to the railway network simulation.
Resumo:
This paper presents an immersion method for preparing the kaolinite-potassium acetate intercalation complexes. The effectiveness of intercalation and influencing factors were analysed and evaluated. The results show that the intercalation of kaolinite by potassium acetate is strongly related to crystallinity of kaolinite, concentration of intercalating agent solution, aging time and pH. The well-crystallized kaolinite is conducive to intercalation by potassium acetate. A higher concentration of intercalating agent (≥30%) can complete the intercalation in a short time (<12h), but at lower concentrations intercalation took significantly longer (≥144h). The weak alkaline condition of pH=10 proved to be the most suitable environment for the formation of intercalation complex. A good intercalated complex can be obtained at room temperature.
Resumo:
Textual cultural heritage artefacts present two serious problems for the encoder: how to record different or revised versions of the same work, and how to encode conflicting perspectives of the text using markup. Both are forms of textual variation, and can be accurately recorded using a multi-version document, based on a minimally redundant directed graph that cleanly separates variation from content.
Resumo:
Hydrotalcites have been synthesised using three different pH solutions to assess the effect of pH on the uptake of arsenate and vanadate. The ability of these hydrotalcites to remove vanadate and arsenate from solution has been determined by ICP-OES. Raman spectroscopy is used to monitor changes in the anionic species for hydrotalcites synthesised at different pH values. The results show a reduction in the concentration of arsenate and vanadate anions that are removed in extremely alkaline solutions. Hydrotalcites containing arsenate and vanadate are stable in solutions up to pH 10. Exposure of these hydrotalcites to higher pH values results in the removal of large percentages of arsenate and vanadate from the hydrotalcite interlayer.
Resumo:
The presence of calcium hydroxide (Ca(OH)2) in Bayer residue slurry inhibits the effectiveness of the seawater neutralisation process to reduce the pH and aluminium concentration in the residue. An increase in the slurry pH (reversion), after seawater neutralisation, is caused by the dissolution of calcium hydroxide and hydrocalumite (solid components found in bauxite refinery residue). Reversion was not observed when the final solution pH was greater than 10.5, due to hydrocalumite being in a state of equilibrium at high pH. Hydrocalumite has been found to form during the neutralisation process when high concentrations of calcium hydroxide are present in the residue liquor. The dissolution of hydrocalumite releases hydroxyl (OH-) and aluminium ions back into solution after the seawater neutralisation (SWN) process, which causes pH and aluminium reversion to occur. This investigation looks at the effect of Ca(OH)2 and subsequently hydrocalumite on the pH and aluminium concentration in bauxite refinery residue liquors after the SWN process.