113 resultados para Processus de Poisson généralisé
Resumo:
Objectives: To report the quarterly incidence of hospital-identified Clostridium difficile infection (HI-CDI) in Australia, and to estimate the burden ascribed to hospital-associated (HA) and community-associated (CA) infections. Design, setting and patients: Prospective surveillance of all cases of CDI diagnosed in hospital patients from 1 January 2011 to 31 December 2012 in 450 public hospitals in all Australian states and the Australian Capital Territory. All patients admitted to inpatient wards or units in acute public hospitals, including psychiatry, rehabilitation and aged care, were included, as well as those attending emergency departments and outpatient clinics. Main outcome measures: Incidence of HI-CDI (primary outcome); proportion and incidence of HA-CDI and CA-CDI (secondary outcomes). Results: The annual incidence of HI-CDI increased from 3.25/10 000 patient-days (PD) in 2011 to 4.03/10 000 PD in 2012. Poisson regression modelling demonstrated a 29% increase (95% CI, 25% to 34%) per quarter between April and December 2011, with a peak of 4.49/10 000 PD in the October–December quarter. The incidence plateaued in January–March 2012 and then declined by 8% (95% CI, − 11% to − 5%) per quarter to 3.76/10 000 PD in July–September 2012, after which the rate rose again by 11% (95% CI, 4% to 19%) per quarter to 4.09/10 000 PD in October–December 2012. Trends were similar for HA-CDI and CA-CDI. A subgroup analysis determined that 26% of cases were CA-CDI. Conclusions: A significant increase in both HA-CDI and CA-CDI identified through hospital surveillance occurred in Australia during 2011–2012. Studies are required to further characterise the epidemiology of CDI in Australia.
Resumo:
This research quantifies the lag effects and vulnerabilities of temperature effects on cardiovascular disease in Changsha—a subtropical climate zone of China. A Poisson regression model within a distributed lag nonlinear models framework was used to examine the lag effects of cold- and heat-related CVD mortality. The lag effect for heat-related CVD mortality was just 0–3 days. In contrast, we observed a statistically significant association with 10–25 lag days for cold-related CVD mortality. Low temperatures with 0–2 lag days increased the mortality risk for those ≥65 years and females. For all ages, the cumulative effects of cold-related CVD mortality was 6.6% (95% CI: 5.2%–8.2%) for 30 lag days while that of heat-related CVD mortality was 4.9% (95% CI: 2.0%–7.9%) for 3 lag days. We found that in Changsha city, the lag effect of hot temperatures is short while the lag effect of cold temperatures is long. Females and older people were more sensitive to extreme hot and cold temperatures than males and younger people.
Resumo:
This paper sets out to contribute to the literature on the design and the implementation of management control systems. To this end, we question what is discussed when a management control system is to be chosen and on what decision-making eventually rests. This study rests upon an ethnomethodology of the Salvation Army’s French branch. Operating in the dual capacity of a researcher and a counsellor to management, between 2000 and 2007, we have unrestricted access to internal data revealing the backstage of management control: discussions and interactions surrounding the choosing of control devices. We contribute to understanding the arising of a need for control, the steps and process followed to decide upon a management control system, and controls in nonprofits. [Cet article vise à contribuer à la littérature sur la mise en place des systèmes de contrôle de gestion. À cette fin, nous questionnons ce qui est discuté lors du choix d’un système de contrôle et sur quoi repose in fine la décision. Cet article est fondé sur une approche ethnométhodologique de l’Armée du Salut en France permise par notre double qualité de chercheurs mais également de conseiller auprès de la direction de l’organisation entre 2000 et 2007. Un accès illimité à des données internes nous permet ainsi de mettre en lumière les aspects méconnus et invisibles du contrôle de gestion : les discussions et interactions entourant le choix d’outils. Nous contribuons à la compréhension de l’émergence du besoin de contrôle, des étapes et du processus de choix d’outils et enfin du contrôle de gestion dans une organisation à but non lucratif.]
Resumo:
This paper uses a correlated multinomial logit model and a Poisson regression model to measure the factors affecting demand for different types of transportation by elderly and disabled people in rural Virginia. The major results are: (a) A paratransit system providing door-to-door service is highly valued by transportation-handicapped people; (b) Taxis are probably a potential but inferior alternative even when subsidized; (c) Buses are a poor alternative, especially in rural areas where distances to bus stops may be long; (d) Making buses handicap-accessible would have a statistically significant but small effect on mode choice; (e) Demand is price inelastic; and (f) The total number of trips taken is insensitive to mode availability and characteristics. These results suggest that transportation-handicapped people take a limited number of trips. Those they do take are in some sense necessary (given the low elasticity with respect to mode price or availability). People will substitute away from relying upon others when appropriate transportation is available, at least to some degree. But such transportation needs to be flexible enough to meet the needs of the people involved.
Resumo:
This paper develops a semiparametric estimation approach for mixed count regression models based on series expansion for the unknown density of the unobserved heterogeneity. We use the generalized Laguerre series expansion around a gamma baseline density to model unobserved heterogeneity in a Poisson mixture model. We establish the consistency of the estimator and present a computational strategy to implement the proposed estimation techniques in the standard count model as well as in truncated, censored, and zero-inflated count regression models. Monte Carlo evidence shows that the finite sample behavior of the estimator is quite good. The paper applies the method to a model of individual shopping behavior. © 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A national survey to estimate vacancy rates of Certified Registered Nurse Anesthetists (CRNAs) in hospitals and ambulatory surgical centers was conducted in 2007. Poisson regression methods were used to improve the precision of the estimates. A significant increase in the estimated vacancy rate was reported for hospitals relative to an earlier study from 2002, although it is important to note that there were some methodological differences between the 2 surveys explaining part of the increase. Results from this study found the vacancy rate was higher in rural hospitals than in nonrural hospitals, and it was lower in ambulatory surgical centers. A number of simulations were run to predict the effects of relevant changes in the market for surgeries and number of CRNAs, which were compared to the predictions from the previous survey. The remarkable factor since the last survey was the unusually large rate of new CRNAs entering the market, yet the vacancy rates remain relatively high.
Resumo:
The effect of temperature on childhood pneumonia in subtropical regions is largely unknown so far. This study examined the impact of temperature on childhood pneumonia in Brisbane, Australia. A quasi-Poisson generalized linear model combined with a distributed lag non linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood pneumonia in Brisbane from 2001 to 2010. The model residuals were checked to identify added effects due to heat waves or cold spells. Both high and low temperatures were associated with an increase in EDVs for childhood pneumonia. Children aged 2–5 years, and female children were particularly vulnerable to the impacts of heat and cold, and Indigenous children were sensitive to heat. Heat waves and cold spells had significant added effects on childhood pneumonia, and the magnitude of these effects increased with intensity and duration. There were changes over time in both the main and added effects of temperature on childhood pneumonia. Children, especially those female and Indigenous, should be particularly protected from extreme temperatures. Future development of early warning systems should take the change over time in the impact of temperature on children’s health into account.
Resumo:
Background Few data on the relationship between temperature variability and childhood pneumonia are available. This study attempted to fill this knowledge gap. Methods A quasi-Poisson generalized linear regression model combined with a distributed lag nonlinear model was used to quantify the impacts of diurnal temperature range (DTR) and temperature change between two neighbouring days (TCN) on emergency department visits (EDVs) for childhood pneumonia in Brisbane, from 2001 to 2010, after controlling for possible confounders. Results An adverse impact of TCN on EDVs for childhood pneumonia was observed, and the magnitude of this impact increased from the first five years (2001–2005) to the second five years (2006–2010). Children aged 5–14 years, female children and Indigenous children were particularly vulnerable to TCN impact. However, there was no significant association between DTR and EDVs for childhood pneumonia. Conclusions As climate change progresses, the days with unstable weather pattern are likely to increase. Parents and caregivers of children should be aware of the high risk of pneumonia posed by big TCN and take precautionary measures to protect children, especially those with a history of respiratory diseases, from climate impacts.
Resumo:
A quasi-Poisson generalized linear model combined with a distributed lag non-linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood diarrhea in Brisbane from 2001 to 2010. Residual of the model was checked to examine whether there was an added effect due to heat waves. The change over time in temperature-diarrhea relation was also assessed. Both low and high temperatures had significant impact on childhood diarrhea. Heat waves had an added effect on childhood diarrhea, and this effect increased with intensity and duration of heat waves. There was a decreasing trend in the main effect of heat on childhood diarrhea in Brisbane across the study period. Brisbane children appeared to have gradually adapted to mild heat, but they are still very sensitive to persistent extreme heat. Development of future heat alert systems should take the change in temperature-diarrhea relation over time into account.
Resumo:
Background. Interventions that prevent healthcare-associated infection should lead to fewer deaths and shorter hospital stays. Cleaning hands (with soap or alcohol) is an effective way to prevent the transmission of organisms, but rates of compliance with hand hygiene are sometimes disappointingly low. The National Hand Hygiene Initiative in Australia aimed to improve hand hygiene compliance among healthcare workers, with the goal of reducing rates of healthcare-associated infection. Methods. We examined whether the introduction of the National Hand Hygiene Initiative was associated with a change in infection rates. Monthly infection rates for healthcare-associated Staphylococcus aureus bloodstream infections were examined in 38 Australian hospitals across 6 states. We used Poisson regression and examined 12 possible patterns of change, with the best fitting pattern chosen using the Akaike information criterion. Monthly bed-days were included to control for increased hospital use over time. Results. The National Hand Hygiene Initiative was associated with a reduction in infection rates in 4 of the 6 states studied. Two states showed an immediate reduction in rates of 17% and 28%, 2 states showed a linear decrease in rates of 8% and 11% per year, and 2 showed no change in infection rates. Conclusions. The intervention was associated with reduced infection rates in most states. The failure in 2 states may have been because those states already had effective initiatives before the national initiative’s introduction or because infection rates were already low and could not be further reduced.
Resumo:
Background Detection of outbreaks is an important part of disease surveillance. Although many algorithms have been designed for detecting outbreaks, few have been specifically assessed against diseases that have distinct seasonal incidence patterns, such as those caused by vector-borne pathogens. Methods We applied five previously reported outbreak detection algorithms to Ross River virus (RRV) disease data (1991-2007) for the four local government areas (LGAs) of Brisbane, Emerald, Redland and Townsville in Queensland, Australia. The methods used were the Early Aberration Reporting System (EARS) C1, C2 and C3 methods, negative binomial cusum (NBC), historical limits method (HLM), Poisson outbreak detection (POD) method and the purely temporal SaTScan analysis. Seasonally-adjusted variants of the NBC and SaTScan methods were developed. Some of the algorithms were applied using a range of parameter values, resulting in 17 variants of the five algorithms. Results The 9,188 RRV disease notifications that occurred in the four selected regions over the study period showed marked seasonality, which adversely affected the performance of some of the outbreak detection algorithms. Most of the methods examined were able to detect the same major events. The exception was the seasonally-adjusted NBC methods that detected an excess of short signals. The NBC, POD and temporal SaTScan algorithms were the only methods that consistently had high true positive rates and low false positive and false negative rates across the four study areas. The timeliness of outbreak signals generated by each method was also compared but there was no consistency across outbreaks and LGAs. Conclusions This study has highlighted several issues associated with applying outbreak detection algorithms to seasonal disease data. In lieu of a true gold standard, a quantitative comparison is difficult and caution should be taken when interpreting the true positives, false positives, sensitivity and specificity.
Resumo:
Objective To evaluate methods for monitoring monthly aggregated hospital adverse event data that display clustering, non-linear trends and possible autocorrelation. Design Retrospective audit. Setting The Northern Hospital, Melbourne, Australia. Participants 171,059 patients admitted between January 2001 and December 2006. Measurements The analysis is illustrated with 72 months of patient fall injury data using a modified Shewhart U control chart, and charts derived from a quasi-Poisson generalised linear model (GLM) and a generalised additive mixed model (GAMM) that included an approximate upper control limit. Results The data were overdispersed and displayed a downward trend and possible autocorrelation. The downward trend was followed by a predictable period after December 2003. The GLM-estimated incidence rate ratio was 0.98 (95% CI 0.98 to 0.99) per month. The GAMM-fitted count fell from 12.67 (95% CI 10.05 to 15.97) in January 2001 to 5.23 (95% CI 3.82 to 7.15) in December 2006 (p<0.001). The corresponding values for the GLM were 11.9 and 3.94. Residual plots suggested that the GLM underestimated the rate at the beginning and end of the series and overestimated it in the middle. The data suggested a more rapid rate fall before 2004 and a steady state thereafter, a pattern reflected in the GAMM chart. The approximate upper two-sigma equivalent control limit in the GLM and GAMM charts identified 2 months that showed possible special-cause variation. Conclusion Charts based on GAMM analysis are a suitable alternative to Shewhart U control charts with these data.
Resumo:
Purpose We designed a visual field test focused on the field utilized while driving to examine associations between field impairment and motor vehicle collision involvement in 2,000 drivers ≥70 years old. Methods The "driving visual field test" involved measuring light sensitivity for 20 targets in each eye, extending 15° superiorly, 30° inferiorly, 60° temporally and 30° nasally. The target locations were selected on the basis that they fell within the field region utilized when viewing through the windshield of a vehicle or viewing the dashboard while driving. Monocular fields were combined into a binocular field based on the more sensitive point from each eye. Severe impairment in the overall field or a region was defined as average sensitivity in the lowest quartile of sensitivity. At-fault collision involvement for five years prior to enrollment was obtained from state records. Poisson regression was used to calculate crude and adjusted rate ratios examining the association between field impairment and at-fault collision involvement. Results Drivers with severe binocular field impairment in the overall driving visual field had a 40% increased rate of at-fault collision involvement (RR 1.40, 95%CI 1.07-1.83). Impairment in the lower and left fields was associated with elevated collision rates (RR 1.40 95%CI 1.07-1.82 and RR 1.49, 95%CI 1.15-1.92, respectively), whereas impairment in the upper and right field regions was not. Conclusions Results suggest that older drivers with severe impairment in the lower or left region of the driving visual field are more likely to have a history of at-fault collision involvement.
Resumo:
Seasonal patterns in mortality have been recognised for decades, with a marked excess of deaths in winter, yet our understanding of the causes of this phenomenon is not yet complete. Research has shown that low and high temperatures are associated with increased mortality independently of season; however, the impact of unseasonal weather on mortality has been less studied. In this study, we aimed to determine if unseasonal patterns in weather were associated with unseasonal patterns in mortality. We obtained daily temperature, humidity and mortality data from 1988 to 2009 for five major Australian cities with a range of climates. We split the seasonal patterns in temperature, humidity and mortality into their stationary and non-stationary parts. A stationary seasonal pattern is consistent from year-to-year, and a non-stationary pattern varies from year-to-year. We used Poisson regression to investigate associations between unseasonal weather and an unusual number of deaths. We found that deaths rates in Australia were 20–30% higher in winter than summer. The seasonal pattern of mortality was non-stationary, with much larger peaks in some winters. Winters that were colder or drier than a typical winter had significantly increased death risks in most cities. Conversely summers that were warmer or more humid than average showed no increase in death risks. Better understanding the occurrence and cause of seasonal variations in mortality will help with disease prevention and save lives.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.