83 resultados para Precisão Sub-Pixel
Resumo:
Background: Falls among hospitalised patients impose a considerable burden on health systems globally and prevention is a priority. Some patient-level interventions have been effective in reducing falls, but others have not. An alternative and promising approach to reducing inpatient falls is through the modification of the hospital physical environment and the night lighting of hospital wards is a leading candidate for investigation. In this pilot trial, we will determine the feasibility of conducting a main trial to evaluate the effects of modified night lighting on inpatient ward level fall rates. We will test also the feasibility of collecting novel forms of patient level data through a concurrent observational sub-study. Methods/design: A stepped wedge, cluster randomised controlled trial will be conducted in six inpatient wards over 14 months in a metropolitan teaching hospital in Brisbane (Australia). The intervention will consist of supplementary night lighting installed across all patient rooms within study wards. The planned placement of luminaires, configurations and spectral characteristics are based on prior published research and pre-trial testing and modification. We will collect data on rates of falls on study wards (falls per 1000 patient days), the proportion of patients who fall once or more, and average length of stay. We will recruit two patients per ward per month to a concurrent observational sub-study aimed at understanding potential impacts on a range of patient sleep and mobility behaviour. The effect on the environment will be monitored with sensors to detect variation in light levels and night-time room activity. We will also collect data on possible patient-level confounders including demographics, pre-admission sleep quality, reported vision, hearing impairment and functional status. Discussion: This pragmatic pilot trial will assess the feasibility of conducting a main trial to investigate the effects of modified night lighting on inpatient fall rates using several new methods previously untested in the context of environmental modifications and patient safety. Pilot data collected through both parts of the trial will be utilised to inform sample size calculations, trial design and final data collection methods for a subsequent main trial.
Resumo:
This thesis makes a significant contribution to knowledge and understanding of 'Human Travel Behaviour' in relation to transportation research. It holds some important merits that have not been proposed before. It develops a new, comprehensive and meaningful relationship that includes bus transit ridership change due to weather variables, seasonality and transit quality of service within a single daily ridership rate estimation model. The research incorporated both temporal and spatial influences on ridership within a modelling structure, named as the Nested Model Structure. It provides a complete picture of ridership variation across the sub-tropical city of Brisbane, Australia.
Resumo:
Intensively managed pastures in subtropical Australia under dairy production are nitrogen (N) loaded agro-ecosystems, with an increased pool of N available for denitrification. The magnitude of denitrification losses and N2:N2O partitioning in these agro-ecosystems is largely unknown, representing a major uncertainty when estimating total N loss and replacement. This study investigated the influence of different soil moisture contents on N2 and N2O emissions from a subtropical dairy pasture in Queensland, Australia. Intact soil cores were incubated over 15 days at 80% and 100% water-filled pore space (WFPS), after the application of 15N labelled nitrate, equivalent to 50 kg N ha−1. This setup enabled the direct quantification of N2 and N2O emissions following fertilisation using the 15N gas flux method. The main product of denitrification in both treatments was N2. N2 emissions exceeded N2O emissions by a factor of 8 ± 1 at 80% WFPS and a factor of 17 ± 2 at 100% WFPS. The total amount of N-N2 lost over the incubation period was 21.27 kg ± 2.10 N2-N ha−1 at 80% WFPS and 25.26 kg ± 2.79 kg ha−1 at 100% WFPS respectively. N2 emissions remained high at 100% WFPS, while related N2O emissions decreased. At 80% WFPS, N2 emissions increased constantly over time while N2O fluxes declined. Consequently, N2/(N2 + N2O) product ratios increased over the incubation period in both treatments. N2/(N2 + N2O) product ratios responded significantly to soil moisture, confirming WFPS as a key driver of denitrification. The substantial amount of fertiliser lost as N2 reveals the agronomic significance of denitrification as a major pathway of N loss for sub-tropical pastures at high WFPS and may explain the low fertiliser N use efficiency observed for these agro-ecosystems.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
Volatility-hygroscopicity tandem differential mobility analyzer measurements were used to infer the composition of sub-100 nm diameter Southern Ocean marine aerosols at Cape Grim in November and December 2007. This study focuses on a short-lived high sea spray aerosol (SSA) event on 7–8 December with two externally mixed modes in the Hygroscopic Growth Factor (HGF) distributions (90% relative humidity (RH)), one at HGF > 2 and another at HGF~1.5. The particles with HGF > 2 displayed a deliquescent transition at 73–75% RH and were nonvolatile up to 280°C, which identified them as SSA particles with a large inorganic sea-salt fraction. SSA HGFs were 3–13% below those for pure sea-salt particles, indicating an organic volume fraction (OVF) of up to 11–46%. Observed high inorganic fractions in sub-100 nm SSA is contrary to similar, earlier studies. HGFs increased with decreasing particle diameter over the range 16–97 nm, suggesting a decreased OVF, again contrary to earlier studies. SSA comprised up to 69% of the sub-100 nm particle number, corresponding to concentrations of 110–290 cm−3. Air mass back trajectories indicate that SSA particles were produced 1500 km, 20–40 h upwind of Cape Grim. Transmission electron microscopy (TEM) and X-ray spectrometry measurements of sub-100 nm aerosols collected from the same location, and at the same time, displayed a distinct lack of sea salt. Results herein highlight the potential for biases in TEM analysis of the chemical composition of marine aerosols.
Resumo:
This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.
Resumo:
This paper describes the 3D Water Chemistry Atlas - an open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model. Following a review of existing technologies, the system adopts Cesium (an open source Web-based 3D mapping and visualization interface) together with a PostGreSQL/PostGIS database, for the technical architecture. In addition a range of the search, filtering, browse and analysis tools were developed that enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about activities such as coal seam gas extraction, waste water extraction and re-use.
Resumo:
The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.