85 resultados para Planar auto-calibration
Resumo:
By referring to Niklas Luhmann's theory of self-referential systems, Aldo Mascareño (2008, submitted for publication) gives an account of system-environment interrelatedness, explaining how social and individual constitute each other through the process of communication and co-creation of meanings. Two possible extensions to his account are discussed. Firstly, auto-communication within the system that happens without any external reference needs to be taken into account while describing the existence and constant re-creation of psychic systems. Secondly, in order for the system and environment or two systems to communicate, an imagined and temporary intersubjectivity between the two needs to be assumed.
Resumo:
Cued recall and item recognition are considered the standard episodic memory retrieval tasks. However, only the neural correlates of the latter have been studied in detail with fMRI. Using an event-related fMRI experimental design that permits spoken responses, we tested hypotheses from an auto-associative model of cued recall and item recognition [Chappell, M., & Humphreys, M. S. (1994). An auto-associative neural network for sparse representations: Analysis and application to models of recognition and cued recall. Psychological Review, 101, 103-128]. In brief, the model assumes that cues elicit a network of phonological short term memory (STM) and semantic long term memory (LTM) representations distributed throughout the neocortex as patterns of sparse activations. This information is transferred to the hippocampus which converges upon the item closest to a stored pattern and outputs a response. Word pairs were learned from a study list, with one member of the pair serving as the cue at test. Unstudied words were also intermingled at test in order to provide an analogue of yes/no recognition tasks. Compared to incorrectly rejected studied items (misses) and correctly rejected (CR) unstudied items, correctly recalled items (hits) elicited increased responses in the left hippocampus and neocortical regions including the left inferior prefrontal cortex (LIPC), left mid lateral temporal cortex and inferior parietal cortex, consistent with predictions from the model. This network was very similar to that observed in yes/no recognition studies, supporting proposals that cued recall and item recognition involve common rather than separate mechanisms.
Resumo:
Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important, and often least appreciated, step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for non-specialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as one key pipeline for peer-reviewed calibrations to enter the database.
Resumo:
Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.
Resumo:
A unique bias-dependent phenomenon in CH3NH3PbI3−xClx based planar perovskite solar cells has been demonstrated, in which the photovoltaic parameters derived from the current–voltage (I–V) curves are highly dependent on the initial positive bias of the I–V measurement. In FTO/CH3NH3PbI3−xClx/Au devices, the open-circuit voltage and short-circuit current increased by ca. 337.5% and 281.9% respectively, by simply increasing the initial bias from 0.5 V to 2.5 V.
Resumo:
Drivers behave in different ways, and these different behaviors are a cause of traffic disturbances. A key objective for simulation tools is to correctly reproduce this variability, in particular for car-following models. From data collection to the sampling of realistic behaviors, a chain of key issues must be addressed. This paper discusses data filtering, robustness of calibration, correlation between parameters, and sampling techniques of acceleration-time continuous car-following models. The robustness of calibration is systematically investigated with an objective function that allows confidence regions around the minimum to be obtained. Then, the correlation between sets of calibrated parameters and the validity of the joint distributions sampling techniques are discussed. This paper confirms the need for adapted calibration and sampling techniques to obtain realistic sets of car-following parameters, which can be used later for simulation purposes.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.
Resumo:
Grand Push Auto is an exertion game in which players aim to push a full sized car to ever increasing speeds. The re-appropriation of a car as essentially a large weight allows us to create a highly portable and distributable exertion game in which the main game element has a weight of over 1000 kilograms. In this paper we discuss initial experiences with GPA, and present 3 questions for ongoing study which have been identified from our early testing: How might we appropriate existing objects in exertion game design, and does appropriation change how we think about these objects in different contexts, for example environmental awareness? How does this relate to more traditional sled based weight training? How can we create exertion games that allow truly brutal levels of force?
Resumo:
Reconfigurable antennas capable of radiating in only specific desired directions increase system functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a horizontally polarized, direction reconfigurable Vivaldi antenna, designed for the lower-band UWB (2-6 GHz). This design employs eight circularly distributed independent Vivaldi antennas with a common port, electronically controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 4 GHz (2-6 GHz), with 5 dB gain in the desired direction and capable of steering over the 360° range.
Resumo:
Antennas are a necessary and critical component of communications and radar systems, but their inability to adjust to new operating scenarios can sometimes limit the system performance. Reconfigurable antennas capable of radiating in only specific desired directions can ameliorate these restrictions and help to achieve increased functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a wide-band, horizontally polarized, direction reconfigurable microstrip antenna operating at 2.45 GHz. The design employs a central horizontally polarized omnidirectional active element surrounded by electronically reconfigurable parasitic microstrip elements, controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 40% (2-3 GHz), with 3 dB gain in the desired direction and capable of steering over the 360° range.