110 resultados para Pelekoudas, Daniel
Resumo:
We analyse the puzzling behavior of the volatility of individual stock returns around the turn of the Millennium. There has been much academic interest in this topic, but no convincing explanation has arisen. Our goal is to pull together the many competing explanations currently proposed in the literature to delermine which, if any, are capable of explaining the volatility trend. We find that many of the different explanations capture the same unusual trend around the Millennium. We find that many of the variables are very highly correlated and it is thus difficult to disentangle their relalive ability to exlplain the time-series behavior in volatility. It seems thai all of the variables that track average volatility well do so mainly by capturing changes in the post-1994 period. These variables have no time-series explanatory power in the pre-1995 years, questioning the underlying idea that any of the explanations currently plesented in the literature can track the trend in volatility over long periods.
Resumo:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in combat, and their potential applications in civil and commercial roles are also receiving considerable attention by industry and the research community. There are numerous published reports of UAVs used in Earth science missions [1], fire-fighting [2], and border security [3] trials, with other speculative deployments, including applications in agriculture, communications, and traffic monitoring. However, none of these UAVs can demonstrate an equivalent level of safety to manned aircraft, particularly in the case of an engine failure, which would require an emergency or forced landing. This may be arguably the main factor that has prevented these UAV trials from becoming full-scale commercial operations, as well as restricted operations of civilian UAVs to only within segregated airspace.
Resumo:
We explore the empirical usefulness of conditional coskewness to explain the cross-section of equity returns. We find that coskewness is an important determinant of the returns to equity, and that the pricing relationship varies through time. In particular we find that when the conditional market skewness is positive investors are willing to sacrifice 7.87% annually per unit of gamma (a standardized measure of coskewness risk) while they only demand a premium of 1.80% when the market is negatively skewed. A similar picture emerges from the coskewness factor of Harvey and Siddique (Harvey, C., Siddique, A., 2000a. Conditional skewness in asset pricing models tests. Journal of Finance 65, 1263–1295.) (a portfolio that is long stocks with small coskewness with the market and short high coskewness stocks) which earns 5.00% annually when the market is positively skewed but only 2.81% when the market is negatively skewed. The conditional two-moment CAPM and a conditional Fama and French (Fama, E., French, K., 1992. The cross-section of expected returns. Journal of Finance 47,427465.) three-factor model are rejected, but a model which includes coskewness is not rejected by the data. The model also passes a structural break test which many existing asset pricing models fail.
Resumo:
This contribution proposes the effect of the studio practice compiling vocals from many takes on the performance of vocalists.
Resumo:
Silhouettes are common features used by many applications in computer vision. For many of these algorithms to perform optimally, accurately segmenting the objects of interest from the background to extract the silhouettes is essential. Motion segmentation is a popular technique to segment moving objects from the background, however such algorithms can be prone to poor segmentation, particularly in noisy or low contrast conditions. In this paper, the work of [3] combining motion detection with graph cuts, is extended into two novel implementations that aim to allow greater uncertainty in the output of the motion segmentation, providing a less restricted input to the graph cut algorithm. The proposed algorithms are evaluated on a portion of the ETISEO dataset using hand segmented ground truth data, and an improvement in performance over the motion segmentation alone and the baseline system of [3] is shown.