129 resultados para PROTEASE-ACTIVATED RECEPTORS
Resumo:
Despite developments in diagnosis and treatment, lung cancer is the commonest cause of cancer death in Europe and North America. Due to increasing cigarette consumption, the incidence of the disease and resultant mortality is rising dramatically in women. Novel approaches to the management of lung cancer are urgently required. Somatostatin is a tetradecapeptide first identified in the pituitary and subsequently throughout the body particularly in neuroendocrine cells of the pancreas and gastrointestinal tract and the nervous system. The peptide has numerous functions including inhibition of hormone release, immunomodulation and neurotransmission and is an endogenous inhibitor of cell proliferation and angiogenesis. Somatostatin and its analogs, including octreotide (SMS 201-995), somatuline (BIM 23014) and vapreotide (RC-160), act by binding to specific somatostatin receptors (SSTR) of which there are 5 principal subtypes, SSTR-1-5. Although elevated plasma somatostatin levels may be detected in 14-15% of patients, tumor cell expression appears rare. SSTR may be expressed by lung tumors, particularly small cell lung cancer and bronchial carcinoid disease. [111In]pentetreotide scintigraphy may have a role to play in the localization and staging of lung cancers both before and following treatment, and in detecting relapsed disease. The potential role of radiolabelled somatostatin analogs as radiotherapeutic agents in the management of lung cancer is currently being explored. Somatostatin analog therapy results in significant growth inhibition of both SSTR-positive and SSTR-negative lung tumors in vivo. Recent work indicates that these agents may enhance the efficacy of chemotherapeutic agents in the treatment of solid tumors including lung cancer. Copyright © 2001 S. Karger AG, Basel.
Resumo:
The epidermal growth factor receptor (EGFR) is part of a family of plasma membrane receptor tyrosine kinases that control many important cellular functions, from growth and proliferation to cell death. Cyclooxygenase (COX)-2 is an enzyme which catalyses the conversion of arachidonic acid to prostagladins and thromboxane. It is induced by various inflammatory stimuli, including the pro-inflammatory cytokines, Interleukin (IL)-1β, Tumour Necrosis Factor (TNF)-α and IL-2. Both EGFR and COX-2 are over-expressed in non-small cell lung cancer (NSCLC) and have been implicated in the early stages of tumourigenesis. This paper considers their roles in the development and progression of lung cancer, their potential interactions, and reviews the recent progress in cancer therapies that are directed toward these targets. An increasing body of evidence suggests that selective inhibitors of both EGFR and COX-2 are potential therapeutic agents for the treatment of NSCLC, in the adjuvant, metastatic and chemopreventative settings. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Hypoxia-inducible factor (HIF)-1α is the regulatory subunit of HIF-1 that is stabilized under hypoxic conditions. Under different circumstances, HIF-1α may promote both tumorigenesis and apoptosis. There is conflicting data on the importance of HIF-1α as a prognostic factor. This study evaluated HIF-1α expression in 172 consecutive patients with stage I-IIIA non small cell lung cancer (NSCLC) using standard immunohistochemical techniques. The extent of HIF-1α nuclear immunostaining was determined using light microscopy and the results were analyzed using the median (5%) as a low cut-point and 60% as a high positive cut-point. Using the low cut-point, positive associations were found with epidermal growth factor receptor (EGFR; p = 0.01), matrix metalloproteinase (MMP)-9 (p = 0.003), membranous (p < 0.001) and perinuclear (p = 0.004) carbonic anhydrase (CA) IX, pS3 (p = 0.008), T-stage (p = 0.042), tumor necrosis (TN; p < 0.001) and squamous histology (p < 0.001). No significant association was found with Bcl-2 or either N- or overall TMN stage or prognosis. When the high positive cut-point was used, HIF-1α was associated with a poor prognosis (p = 0.034). In conclusion, the associations with EGFR, MMP-9, p53 and CA IX suggest that these factors may either regulate or be regulated by HIF-1α. The association with TN and squamous-type histology, which is relatively more necrotic than other NSCLC types, reflects the role of hypoxia in the regulation of HIF-1α. The prognostic data may reflect a change in the behavior of HIF-1α in increasingly hypoxic environments. © 2004 Wiley-Liss, Inc.
Resumo:
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed “low risk”, as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.
Resumo:
Fibrogenic stresses promote progression of renal tubulointerstitial fibrosis, disparately affecting survival, proliferation and trans-differentiation of intrinsic renal cell populations through ill-defined biomolecular pathways. We investigated the effect of fibrogenic stresses on the activation of cell-specific mitogen-activated protein kinase (MAPK) in renal fibroblast, epithelial and endothelial cell populations. The relative outcomes (cell death, proliferation, trans-differentiation) associated with activation or inhibition of extracellular-regulated protein kinase (ERK) or stress activated/c-Jun N terminal kinase (JNK) were analysed in each renal cell population after challenge with oxidative stress (1 mmol/L H2O2), transforming growth factor-beta1 (TGF-beta1, 10 ng/mL) or tumour necrosis factor-alpha (TNF-alpha, 50 ng/mL) over 0-20 h. Apoptosis increased significantly in all cell types after oxidative stress (P < 0.05). In fibroblasts, oxidative stress caused the activation of ERK (pERK) but not JNK (pJNK). Inhibition of ERK by PD98059 supported its role in a fibroblast death pathway. In epithelial and endothelial cells, oxidative stress-induced apoptosis was preceded by early induction of pERK, but its inhibition did not support a pro-apoptotic role. Early ERK activity may be conducive to their survival or promote the trans-differentiation of epithelial cells. In epithelial and endothelial cells, oxidative stress induced pJNK acutely. Pretreatment with SP600125 (JNK inhibitor) verified its pro-apoptotic activity only in epithelial cells. Transforming growth factor-beta1 did not significantly alter mitosis or apoptosis in any of the cell types, nor did it alter MAPK activity. Tumor necrosis factor-alpha caused increased apoptosis with no associated change in MAPK activity. Our results demonstrate renal cell-specific differences in the activation of ERK and JNK following fibrotic insult, which may be useful for targeting excessive fibroblast proliferation in chronic fibrosis.
Resumo:
The Chlamydia trachomatis serine protease HtrA (CtHtrA) has recently been demonstrated to be essential during the replicative phase of the chlamydial developmental cycle. A chemical inhibition strategy (serine protease inhibitor JO146) was used to demonstrate this essential role and it was found that the chlamydial inclusions diminish in size and are lost from the cell after CtHtrA inhibition without formation of viable elementary bodies. The inhibitor (JO146) was used in this study to investigate the role of CtHtrA for penicillin persistence and heat stress model conditionscultures for Chlamydia trachomatis. JO146 addition during penicillin persistence resulted in only minor reductions (~1 log) in the final viable infectious yield after persistent Chlamydia were reverted from persistence. However, JO146 treatment during the reversion and recovery from penicillin persistence was completely lethal for Chlamydia trachomatis. JO146 was completely lethal when added either during heat stress conditions, or during the recovery from heat stress conditions. These data together indicate that CtHtrA has essential roles during some stress environments (heat shock), recovery from stress environments (heat shock and penicillin persistence), as well as the previously characterised essential role during the replicative phase of the chlamydial developmental cycle. Thus, CtHtrA is an essential protease with both replicative phase and stress condition functions for Chlamydia trachomatis.
Resumo:
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.
Resumo:
BACKGROUND Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. METHODS The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. RESULTS Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. CONCLUSIONS These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer.
Resumo:
Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.
Resumo:
Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.
Resumo:
The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.
Resumo:
Upon overexpression of integrin αvβ3 and its engagement by vitronectin, we previously showed enhanced adhesion, proliferation, and motility of human ovarian cancer cells. By studying differential expression of genes possibly related to these tumor biological events, we identified the epidermal growth-factor receptor (EGF-R) to be under control of αvβ3 expression levels. Thus in the present study we characterized αvβ3-dependent changes of EGF-R and found significant upregulation of its expression and activity which was reflected by prominent changes of EGF-R promoter activity. Upon disruption of DNA-binding motifs for the transcription factors p53, ETF, the repressor ETR, p50, and c-rel, respectively, we sought to identify DNA elements contributing to αvβ3-mediated EGF-R promoter induction. Both, the p53- and ETF-mutant, while exhibiting considerably lower EGF-R promoter activity than the wild type promoter, retained inducibility by αvβ3. Mutation of the repressor motif ETR, as expected, enhanced EGF-R promoter activity with a further moderate increase upon αvβ3 elevation. The p50-mutant displayed EGF-R promoter activity almost comparable to that of the wild type promoter with no impairment of induction by αvβ3. However, the activity of an EGF-R promoter mutant displaying a disrupted c-rel-binding motif did not only prominently decline, but, moreover, was not longer responsive to enhanced αvβ3, involving this DNA element in αvβ3-dependent EGF-R upregulation. Moreover, αvβ3 did not only increase the EGF-R but, moreover, also led to obvious co-clustering on the cancer cell surface. By studying αvβ3/EGF-R-effects on the focal adhesion kinase (FAK) and the mitogen activated protein kinases (MAPK) p44/42 (erk−1/erk−2), having important functions in synergistic crosstalk between integrins and growth-factor receptors, we found for both significant enhancement of expression and activity upon αvβ3/VN interaction and cell stimulation by EGF. Upregulation of the EGF-R by integrin αvβ3, both receptor molecules with a well-defined role as targets for cancer treatment, might represent an additional mechanism to adapt synergistic receptor signaling and crosstalk in response to an altered tumor cell microenvironment during ovarian cancer progression.
Resumo:
Large, osseous, segmental defects heal poorly. Muscle has a propensity to form bone when exposed to an osteogenic stimulus such as that provided by transfer and expression of cDNA encoding bone morphogenetic protein-2 (BMP-2). The present study evaluated the ability of genetically modified, autologous muscle to heal large cranial defects in rats. Autologous grafts (8 mm � 2 mm) were punched from the biceps femoris muscle and transduced intraoperatively with recombinant adenovirus vector containing human BMP-2 or green fluorescent protein cDNA. While the muscle biopsies were incubating with the vector, a central parietal 8 mm defect was surgically created in the calvarium of the same animal. The gene-activated muscle graft was then implanted into the cranial defect. After 8 weeks, crania were examined radiographically, histologically, and by micro-computed tomography and dual energy X-ray absorptiometry. Although none of the defects were completely healed in this time, muscle grafts expressing BMP-2 deposited more than twice as much new bone as controls. Histology confirmed the anatomical integrity of the newly formed bone, which was comparable in thickness and mineral density to the original cranial bone. This study confirms the in vivo osteogenic properties of genetically modified muscle and suggests novel strategies for healing bone. � 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1095–1102, 2012
Resumo:
Activation of β2-adrenergic receptors inhibits osteoblastic bone formation and enhances osteoclastic bone resorption. Whether β-blockers inhibit ovariectomy-induced bone loss and decrease fracture risk remains controversial. To further explore the role of β-adrenergic signaling in skeletal acquisition and response to estrogen deficiency, we evaluated mice lacking the three known β-adrenergic receptors (β-less). Body weight, percent fat, and bone mineral density were significantly higher in male β-less than wild-type (WT) mice, more so with increasing age. Consistent with their greater fat mass, serum leptin was significantly higher in β-less than WT mice. Mid-femoral cross-sectional area and cortical thickness were significantly higher in adult β-less than WT mice, as were femoral biomechanical properties (+28 to +49%, P < 0.01). Young male β-less had higher vertebral (1.3-fold) and distal femoral (3.5-fold) trabecular bone volume than WT (P < 0.001 for both) and lower osteoclast surface. With aging, these differences lessened, with histological evidence of increased osteoclast surface and decreased bone formation rate at the distal femur in β-less vs. WT mice. Serum tartrate-resistance alkaline phosphatase-5B was elevated in β-less compared with WT mice from 8–16 wk of age (P < 0.01). Ovariectomy inhibited bone mass gain and decreased trabecular bone volume/total volume similarly in β-less and WT mice. Altogether, these data indicate that absence of β-adrenergic signaling results in obesity and increased cortical bone mass in males but does not prevent deleterious effects of estrogen deficiency on trabecular bone microarchitecture. Our findings also suggest direct positive effects of weight and/or leptin on bone turnover and cortical bone structure, independent of adrenergic signaling.