154 resultados para Oxygen mobility
Resumo:
The older adult population (65 years and over) represents a rapid growing segment of the population in many developed countries. Unlike earlier cohorts of older drivers that included many who were familiar with public transportation, the present cohort of older drivers historically has a greater reliance on the private automobile as their main form of transportation. Recent studies of older adults’ travel patterns reported automobile to be responsible for over 80% of the total number of hours spent on all trips. While older drivers, as a group, does not demonstrate a particular road risk, the evident demographic change and the increased physical fragility and severity of crash-related injuries makes older driver safety a prevalent public health issue. This study systematically reviewed the safety and mobility outcomes of existing strategies used internationally to manage older driver safety, with a specific focus on age-based testing (ABT), license restriction and self-regulation (i.e. voluntary limiting driving in potentially hazardous situations). ABT remains the most commonly adopted strategy by licensing authorities both within Australia and internationally. Heterogeneity in the development of functional declines, and in driving behaviours within the older driver population, makes age an unreliable index of driving capacity. Given the counter-productive safety and mobility outcomes of ABT strategies, their continued popularity within both the legislative and public domains remains problematic. Self-regulation may provide greater potential for reducing older drivers’ crash risk while maintaining their mobility and independence. The current body of literature on older drivers’ self-regulation is systematically reviewed. Despite being promoted by researchers and licensing authorities as a strategy to maintain older driver safety and mobility, the proportion of older drivers who self-regulate, and exactly how they do so, remains unclear. Future research on older drivers’ adoption of self-regulation, particularly the underlying psychological factors that underlies this process, is needed in order to promote its use within the older driver community.
Resumo:
Mobility across space is an exemplary characteristic of the global era and an important aspect of the cultural experience of many people in advanced industrialised nations. Mobility evokes powerful images that effectively counter any illusion of stationary life and provide a break from the insularity of the local and parochial. High levels of mobility are simultaneously a fact, a necessity and a cultural aspiration. In recent times, debates about mobility in social theory have considered the relationship between mobility and cosmopolitan culture and identities (Hannerz, 1990, Urry, 1990, 2000, Beck, 2006). Against this backdrop, this paper also draws on some of the more recent discussions about the emergence of globalised and cosmopolitan identities among young people (Beck and Beck-Gernsheim, 2009). Using data from a longitudinal study of young people in Queensland, this paper provides an insight into young people’s aspirations about future mobility. The data affirm Skeggs’ (2004) comment that mobility is an unequal resource, and demonstrate that aspirations of future mobility reflect numerous social, economic and cultural realities of young people’s lives. This inevitably leads us to problematise the established, and often abstract, nexus between cosmopolitanism and mobility in contemporary debates about cosmopolitanism.
Resumo:
Background Less invasive methods of determining cardiac output are now readily available. Using indicator dilution technique, for example has made it easier to continuously measure cardiac output because it uses the existing intra-arterial line. Therefore gone is the need for a pulmonary artery floatation catheter and with it the ability to measure left atrial and left ventricular work indices as well the ability to monitor and measure a mixed venous saturation (SvO2). Purpose The aim of this paper is to put forward the notion that SvO2 provides valuable information about oxygen consumption and venous reserve; important measures in the critically ill to ensure oxygen supply meets cellular demand. In an attempt to portray this, a simplified example of the septic patient is offered to highlight the changing pathophysiological sequelae of the inflammatory process and its importance for monitoring SvO2. Relevance to clinical practice SvO2 monitoring, it could be argued, provides the gold standard for assessing arterial and venous oxygen indices in the critically ill. For the bedside ICU nurse the plethora of information inherent in SvO2 monitoring could provide them with important data that will assist in averting potential problems with oxygen delivery and consumption. However, it has been suggested that central venous saturation (ScvO2) might be an attractive alternative to SvO2 because of its less invasiveness and ease of obtaining a sample for analysis. There are problems with this approach and these are to do with where the catheter tip is sited and the nature of the venous admixture at this site. Studies have shown that ScvO2 is less accurate than SvO2 and should not be used as a sole guiding variable for decision-making. These studies have demonstrated that there is an unacceptably wide range in variance between ScvO2 and SvO2 and this is dependent on the presenting disease, in some cases SvO2 will be significantly lower than ScvO2. Conclusion Whilst newer technologies have been developed to continuously measure cardiac output, SvO2 monitoring is still an important adjunct to clinical decision-making in the ICU. Given the information that it provides, seeking alternatives such as ScvO2 or blood samples obtained from femorally placed central venous lines, can unnecessarily lead to inappropriate treatment being given or withheld. Instead when using ScvO2, trending of this variable should provide clinical determinates that are useable for the bedside ICU nurse, remembering that in most conditions SvO2 will be approximately 16% lower.
Resumo:
This multidisciplinary research advanced the current understanding of self-regulation – a critical component in safe and sustainable mobility for older adults. It investigates the sociodemographic and psychosocial factors that underlies older adults' self-regulation, and examines their travel behaviours using a combination of self-report, in-vehicle and wearable devices. This research developed a novel theoretical model that significantly predicts self-regulation and objectively driving behaviours among older drivers.
Resumo:
The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.
Resumo:
To evaluate the validity of the ActiGraph accelerometer for the measurement of physical activity intensity in children and adolescents with cerebral palsy (CP) using oxygen uptake (VO 2) as the criterion measure. Thirty children and adolescents with CP (mean age 12.6 ± 2.0 years) wore an ActiGraph 7164 and a Cosmed K4b 2 portable indirect calorimeter during four activities; quiet sitting, comfortable paced walking, brisk paced walking and fast paced walking. VO 2 was converted to METs and activity energy expenditure and classiWed as sedentary, light or moderate-to-vigorous intensity according to the conventions for children. Mean ActiGraph counts min -1 were classiWed as sedentary, light or moderate-to-vigorous (MVPA) intensity using four diVerent sets of cut-points. VO 2 and counts min¡1 increased signiWcantly with increases in walking speed (P < 0.001). Receiver operating characteristic (ROC) curve analysis indicated that, of the four sets of cut-points evaluated, the Evenson et al. (J Sports Sci 26(14):1557-1565, 2008) cut-points had the highest classiWcation accuracy for sedentary (92%) and MVPA (91%), as well as the second highest classiWcation accuracy for light intensity physical activity (67%). A ROC curve analysis of data from our participants yielded a CP-speciWc cut-point for MVPA that was lower than the Evenson cut-point (2,012 vs. 2,296 counts min¡1), however, the diVerence in classiWcation accuracy was not statistically signiWcant 94% (95% CI = 88.2-97.7%) vs. 91% (95% CI = 83.5-96.5%). In conclusion, among children and adolescents with CP, the ActiGraph is able to diVerentiate between diVerent intensities of walking. The use of the Evenson cut-points will permit the estimation of time spent in MVPA and allows comparisons to be made between activity measured in typically developing adolescents and adolescents with CP. © 2011 Springer-Verlag.
Resumo:
Different magnetization in vertical graphenes fabricated by plasma-enabled chemical conversion of organic precursors with various oxygen atom contents and bonding energies was achieved. The graphenes grown from fat-like precursors exhibit magnetization up to 8 emu g−1, whereas the use of sugar-containing precursors results in much lower numbers. A relatively high Curie temperature exceeding 600 K was also demonstrated.
Resumo:
The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.
Resumo:
Plasma-assisted synthesis of nanostructures is one of the most precise and effective approaches used in nanodevice fabrication. Here we report on the innovative approach of synthesizing nanostructured cadmium oxide films on Cd substrates using a reactive oxygen plasma-based process. Under certain conditions, the surface morphology features arrays of crystalline CdO nano/micropyramids. These nanostructures grow via unconventional plasma-assisted oxidation of a cadmium foil exposed to inductively coupled plasmas with a narrow range of process parameters. The growth of the CdO pyramidal nanostructures takes place in the solid-liquid-solid phase, with the rates determined by the interaction of plasma-produced oxygen atoms and ions with the surface. It is shown that the size of the pyramidal structures can be effectively controlled by the fluxes of oxygen atoms and ions impinging on the cadmium surface. The unique role of the reactive plasma environment in the controlled synthesis of CdO nanopyramidal structures is discussed as well.
Resumo:
For the normal homeostasis of a cell, there must be a balance between radical oxygen species/radical nitrogen species (ROS/RNS) production and the neutralization of these species by antioxidant scavenging. In times of stress, this balance is not maintained, and the result is oxidative stress. This stress can affect many pathways in the body and result in pathological consequences. Recent evidence suggests that ROS/RNS can affect the epigenetic regulation of genes by affecting the function of histone and DNA modifying enzymes, thus affecting phenotypic changes within the cellular environment. In the following chapter, we provide a broad overview of how oxidative stress induced by ROS/RNS can affect epigenetics, and using lung disease as our model we link the connection between these processes.
Resumo:
Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.
Resumo:
This chapter reports on a study that reveals the essence of participation in urban spaces by ten children who live with various physical conditions: Muscular Dystrophy, Cerebral Palsy, and Autoimmune Rheumatic Diseases. These conditions affect muscle and movement differently resulting in diverse ways in which children move through space (personal mobility). The children at the time of the research were 9-12 years of age residing in South-east Queensland, Australia. The approach and methods selected for this study, interpretive phenomenological inquiry and grounded theory, were chosen for their capacity to capture the complexity and multiple interactions of the child’s urban living. The confronting and poignant accounts by children and their families of their experiences produced a new way of understanding the concept of participation, as a ‘journey of becoming involved.’ Their accounts of performing everyday routines (e.g. leaving home, getting in and out of the car, and entering places) in urban spaces (neighbourhood streets, schools, open spaces, shopping centres, and hospitals) revealed differences in the way settings were experienced. These differences were associated with the interplay between the body, space and context. Where interplays were problematic, explicit decisions about children’s involvement were made. These decisions were described in terms of ‘avoid going’, ‘pick and choose’, ‘discontinue’, ‘accept’, or ‘contest.’ What these decisions mean is some spaces are avoided, some journeys are discontinued, and some barriers encountered in journeys are normalised as everyday experiences, i.e. ‘tolerable discrimination’. These actions resulted in experiences of non-participation or partial–tokenistic participation. The key substantive contribution of the research lies in the identification of points in children’s journeys that shape participation experience. These points identify where future interventions in policy, programming and design can be made to make real and sustaining changes to lives of children and their families in geographies crucial to urban living.
Resumo:
Family mobility decisions reveal much about how the public and private realms of social life interact and change. This sociological study explores how contemporary families reconcile individual members’ career and education projects within the family unit over time and space, and unpacks the intersubjective constraints on workforce mobility. This Australian mixed methods study sampled Defence Force families and middle class professional families to illustrate how families’ educational projects are necessarily and deeply implicated in issues of workforce mobility and immobility, in complex ways. Defence families move frequently, often absorbing the stresses of moving through ‘viscous’ institutions as private troubles. In contrast, the selective mobility of middle class professional families and their ‘no go zones’ contribute to the public issue of poorly serviced rural communities. Families with different social, material and vocational resources at their disposal are shown to reflexively weigh the benefits and risks associated with moving differently. The book also explore how priorities shift as children move through educational phases. The families’ narratives offer empirical windows on larger social processes, such as the mobility imperative, the gender imbalance in the family’s intersubjective bargains, labour market credentialism, the social construction of place, and the family’s role in the reproduction of class structure.
Resumo:
Measurement of discrimination against 18O during dark respiration in plants is currently accepted as the only reliable method of estimating the partitioning of electrons between the cytochrome and alternative pathways. In this paper, we review the theory of the technique and its application to a gas-phase system. We extend it to include sampling effects and show that the isotope discrimination factor, D, is calculated as –dln(1 + δ)/dlnO*, where δ is isotopic composition of the substrate oxygen and O*=[O2]/[N2] in a closed chamber containing tissue respiring in the dark. It is not necessary to integrate the expression but, if the integrated form is used, the resultant regression should not be constrained through the origin. This is important since any error in D will have significant effects on the estimation of the flux of electrons through the two pathways.