296 resultados para Optimum temperature
Resumo:
Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly towards CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating temperature of 150oC.
Resumo:
The relationship between weather and mortality has been observed for centuries. Recently, studies on temperature-related mortality have become a popular topic as climate change continues. Most of the previous studies found that exposure to hot or cold temperature affects mortality. This study aims to address three research questions: 1. What is the overall effect of daily mean temperature variation on the elderly mortality in the published literature using a meta-analysis approach? 2. Does the association between temperature and mortality differ with age, sex, or socio-economic status in Brisbane? 3. How is the magnitude of the lag effects of the daily mean temperature on mortality varied by age and cause-of-death groups in Brisbane? In the meta-analysis, there was a 1-2 % increase in all-cause mortality for a 1ºC decrease during cold temperature intervals and a 2-5% increase for a 1ºC increment during hot temperature intervals among the elderly. Lags of up to 9 days in exposure to cold temperature intervals were statistically significantly associated with all-cause mortality, but no significant lag effects were observed for hot temperature intervals. In Brisbane, the harmful effect of high temperature (over 24ºC) on mortality appeared to be greater among the elderly than other age groups. The effect estimate among women was greater than among men. However, No evidence was found that socio-economic status modified the temperature-mortality relationship. The results of this research also show longer lag effects in cold days and shorter lag effects in hot days. For 3-day hot effects associated with 1°C increase above the threshold, the highest percent increases in mortality occurred among people aged 85 years or over (5.4% (95% CI: 1.4%, 9.5%)) compared with all age group (3.2% (95% CI: 0.9%, 5.6%)). The effect estimate among cardiovascular deaths was slightly higher than those among all-cause mortality. For overall 21-day cold effects associated with a 1°C decrease below the threshold, the percent estimates in mortality for people aged 85 years or over, and from cardiovascular diseases were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%), respectively compared with all age group (2.0% (95% CI: 0.7%, 3.3%)). Little research of this kind has been conducted in the Southern Hemisphere. This PhD research may contribute to the quantitative assessment of the overall impact, effect modification and lag effects of temperature variation on mortality in Australia and The findings may provide useful information for the development and implementation of public health policies to reduce and prevent temperature-related health problems.
Resumo:
Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.
Resumo:
In this paper, a generic and flexible optimisation methodology is developed to represent, model, solve and analyse the iron ore supply chain system by integrating of iron ore shipment, stockpiles and railing within a whole system. As a result, an integrated train-stockpile-ship timetable is created and optimised for improving efficiency of overall supply chain system. The proposed methodology provides better decision making on how to significantly improve rolling stock utilisation with the best cost-effectiveness ratio. Based on extensive computational experiments and analysis, insightful and quantitative advices are suggested for iron ore mine industry practitioners. The proposed methodology contributes to the sustainability of the environment by reducing pollution due to better utilisation of transportation resources and fuel.
Resumo:
Thin films of expoxy nanocomposites modified by multiwall carbon nanotubes (MWCNTs) were prepared by shear mixing and spin casting. The electrical behaviour and its dependence with temperature between 243 and 353 degrees Kelvin were characterized by measuring the direct current (DC) conductivity. Depending on the fabrication process, both linear and non-linear relationships between conductivity and temperature were observed. In addition, the thermal history also played a role in dictating the conductivity. The implications of these observations for potential application of these files as strain sensors are discussed.
Resumo:
This paper discusses and summarises a recent systematic study on the implication of global warming on air conditioned office buildings in Australia. Four areas are covered, including analysis of historical weather data, generation of future weather data for the impact study of global warming, projection of building performance under various global warming scenarios, and evaluation of various adaptation strategies under 2070 high global warming conditions. Overall, it is found that depending on the assumed future climate scenarios and the location considered, the increase of total building energy use for the sample Australian office building may range from 0.4 to 15.1%. When the increase of annual average outdoor temperature exceeds 2 °C, the risk of overheating will increase significantly. However, the potential overheating problem could be completely eliminated if internal load density is significantly reduced.
Resumo:
Nineteen studies met the inclusion criteria. A skin temperature reduction of 5–15 °C, in accordance with the recent PRICE (Protection, Rest, Ice, Compression and Elevation) guidelines, were achieved using cold air, ice massage, crushed ice, cryotherapy cuffs, ice pack, and cold water immersion. There is evidence supporting the use and effectiveness of thermal imaging in order to access skin temperature following the application of cryotherapy. Thermal imaging is a safe and non-invasive method of collecting skin temperature. Although further research is required, in terms of structuring specific guidelines and protocols, thermal imaging appears to be an accurate and reliable method of collecting skin temperature data following cryotherapy. Currently there is ambiguity regarding the optimal skin temperature reductions in a medical or sporting setting. However, this review highlights the ability of several different modalities of cryotherapy to reduce skin temperature.
Resumo:
BACKGROUND: The effect of extreme temperature has become an increasing public health concern. Evaluating the impact of ambient temperature on morbidity has received less attention than its impact on mortality. METHODS: We performed a systematic literature review and extracted quantitative estimates of the effects of hot temperatures on cardiorespiratory morbidity. There were too few studies on effects of cold temperatures to warrant a summary. Pooled estimates of effects of heat were calculated using a Bayesian hierarchical approach that allowed multiple results to be included from the same study, particularly results at different latitudes and with varying lagged effects. RESULTS: Twenty-one studies were included in the final meta-analysis. The pooled results suggest an increase of 3.2% (95% posterior interval = -3.2% to 10.1%) in respiratory morbidity with 1°C increase on hot days. No apparent association was observed for cardiovascular morbidity (-0.5% [-3.0% to 2.1%]). The length of lags had inconsistent effects on the risk of respiratory and cardiovascular morbidity, whereas latitude had little effect on either. CONCLUSIONS: The effects of temperature on cardiorespiratory morbidity seemed to be smaller and more variable than previous findings related to mortality.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.
Resumo:
A high sensitive fiber Bragg grating (FBG) strain sensor with automatic temperature compensation is demonstrated. FBG is axially linked with a stick and their free ends are fixed to the measured object. When the measured strain changes, the stick does not change in length, but the FBG does. When the temperature changes, the stick changes in length to pull the FBG to realize temperature compensation. In experiments, 1.45 times strain sensitivity of bare FBG with temperature compensation of less than 0.1 nm Bragg wavelength drift over 100 ◦C shift is achieved.
Resumo:
At cryogenic temperature, a fiber Bragg grating (FBG) temperature sensor with controllable sensitivity and variable measurement range is demonstrated by using bimetal configuration. In experiments, sensitivities of -51.2, -86.4, and -520 pm/K are achieved by varying the lengths of the metals. Measurement ranges of 293-290.5, 283-280.5, and 259-256.5 K are achieved by shortening the distance of the gap among the metals.
Resumo:
The conversion of coconut shell into pyrolytic oil by fixed bed fire-tube heating reactor has been taken into consideration in this study. The major components of the system were fixed bed fire-tube heating reactor, liquid condenser and collectors. The raw and crushed tamarind seed in particle form was pyrolized in an electrically heated 10 cm diameter and 27 cm high fixed bed reactor. The products are oil, char and gases. The parameters varied were reactor bed temperature, running time, gas flow rate and feed particle size. The parameters were found to influence the product yields significantly. The maximum liquid yield was 34.3 wt% at 4500C for a feed size of 0.6mm at a gas flow rate of 6 liter/min with a running time of minute. The pyrolysis oil was obtained at these optimum process conditions were analyzed for physical and chemical properties to be used as an alternative fuel.
Resumo:
Photocatalytic water splitting is a process which could potentially lead to commercially viable solar hydrogen production. This thesis uses an engineering perspective to investigate the technology. The effect of light intensity and temperature on photocatalytic water splitting was examined to evaluate the prospect of using solar concentration to increase the feasibility of the process. P25 TiO2 films deposited on conducting glass were used as photocatalyst electrodes and coupled with platinum electrodes which were also deposited on conducting glass. These films were used to form a photocatalysis cell and illuminated with a Xenon arc lamp to simulate solar light at intensities up to 50 suns. They were also tested at temperatures between 20°C and 100°C. The reaction demonstrated a sub-linear relationship with intensity. Photocurrent was proportional to intensity with an exponential value of 0.627. Increasing temperature resulted in an exponential relationship. This proved to follow an Arrhenius relationship with an activation energy of 10.3 kJ mol-1 and a pre-exponential factor of approximately 8.7×103. These results then formed the basis of a mathematical model which extrapolated beyond the range of the experimental tests. This model shows that the loss of efficiency from performing the reaction under high light intensity is offset by the increased reaction rate and efficiency from the associated temperature increase. This is an important finding for photocatalytic water splitting. It will direct future research in system design and materials research and may provide an avenue for the commercialisation of this technology.