374 resultados para Optical character recognition
Resumo:
Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.
Resumo:
In an automotive environment, the performance of a speech recognition system is affected by environmental noise if the speech signal is acquired directly from a microphone. Speech enhancement techniques are therefore necessary to improve the speech recognition performance. In this paper, a field-programmable gate array (FPGA) implementation of dual-microphone delay-and-sum beamforming (DASB) for speech enhancement is presented. As the first step towards a cost-effective solution, the implementation described in this paper uses a relatively high-end FPGA device to facilitate the verification of various design strategies and parameters. Experimental results show that the proposed design can produce output waveforms close to those generated by a theoretical (floating-point) model with modest usage of FPGA resources. Speech recognition experiments are also conducted on enhanced in-car speech waveforms produced by the FPGA in order to compare recognition performance with the floating-point representation running on a PC.
Resumo:
Purpose: Small red lights (one minute of arc or less) change colour appearance with positive defocus. We investigated the influence of longitudinal chromatic aberration and monochromatic aberrations on the colour appearance of small narrow band lights. Methods: Seven cyclopleged, trichromatic observers viewed a small light (one minute of arc, λmax = 510, 532, 550, 589, 620, 628 nm, approximately 19 per cent Weber contrast) centred within a black annulus (4.5 minutes of arc) and surrounded by a uniform white field (2,170 cd/m2). Pupil size was four millimetres. An optical trombone varied focus. Longitudinal chromatic aberration was controlled with a two component Powell achromatising lens that neutralises the eye’s chromatic aberration; a doublet that doubles and a triplet that reverses the eye’s chromatic aberration. Astigmatism and higher order monochromatic aberrations were corrected using adaptive optics. Results: Observers reported a change in appearance of the small red light (628 nm) without the Powell lens at +0.49 ± 0.21 D defocus and with the doublet at +0.62 ± 0.16 D. Appearance did not alter with the Powell lens, and five of seven observers reported the phenomenon with the triplet for negative defocus (-0.80 ± 0.47 D). Correction of aberrations did not significantly affect the magnitude at which the appearance of the red light changed (+0.44 ± 0.18 D without correction; +0.46 ± 0.16 D with correction). The change in colour appearance with defocus extended to other wavelengths (λmax = 510 to 620 nm), with directions of effects being reversed for short wavelengths relative to long wavelengths. Conclusions: Longitudinal chromatic aberrations but not monochromatic aberrations are involved in changing the appearance of small lights with defocus.
Resumo:
Purpose: To investigate whether wearing different presbyopic vision corrections alters the pattern of eye and head movements when viewing dynamic driving-related traffic scenes. Methods: Participants included 20 presbyopes (mean age: 56±5.7 years) who had no experience of wearing presbyopic vision corrections (i.e. all were single vision wearers). Eye and head movements were recorded while wearing five different vision corrections: single vision lenses (SV), progressive addition spectacle lenses (PALs), bifocal spectacle lenses (BIF), monovision (MV) and multifocal contact lenses (MTF CL) in random order. Videotape recordings of traffic scenes of suburban roads and expressways (with edited targets) were presented as dynamic driving-related stimuli and digital numeric display panels included as near visual stimuli (simulating speedometer and radio). Eye and head movements were recorded using the faceLAB™ system and the accuracy of target identification was also recorded. Results: The magnitude of eye movements while viewing the driving-related traffic scenes was greater when wearing BIF and PALs than MV and MTF CL (p≤0.013). The magnitude of head movements was greater when wearing SV, BIF and PALs than MV and MTF CL (p<0.0001) and the number of saccades was significantly higher for BIF and PALs than MV (p≤0.043). Target recognition accuracy was poorer for all vision corrections when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze (p=0.008), and PALs gave better performance than MTF CL (p=0.043). Conclusions: Different presbyopic vision corrections alter eye and head movement patterns. In particular, the larger magnitude of eye and head movements and greater number of saccades associated with the spectacle presbyopic corrections, may impact on driving performance.
Resumo:
Natural iowaite, magnesium–ferric oxychloride mineral having light green color originating from Australia has been characterized by EPR, optical, IR, and Raman spectroscopy. The optical spectrum exhibits a number of electronic bands due to both Fe(III) and Mn(II) ions in iowaite. From EPR studies, the g values are calculated for Fe(III) and g and A values for Mn(II). EPR and optical absorption studies confirm that Fe(III) and Mn(II) are in distorted octahedral geometry. The bands that appear both in NIR and Raman spectra are due to the overtones and combinations of water and carbonate molecules. Thus EPR, optical, and Raman spectroscopy have proven most useful for the study of the chemistry of natural iowaite and chemical changes in the mineral.
Resumo:
The purpose of this chapter is to describe the use of caricatured contrasting scenarios (Bødker, 2000) and how they can be used to consider potential designs for disruptive technologies. The disruptive technology in this case is Automatic Speech Recognition (ASR) software in workplace settings. The particular workplace is the Magistrates Court of the Australian Capital Territory.----- Caricatured contrasting scenarios are ideally suited to exploring how ASR might be implemented in a particular setting because they allow potential implementations to be “sketched” quickly and with little effort. This sketching of potential interactions and the emphasis of both positive and negative outcomes allows the benefits and pitfalls of design decisions to become apparent.----- A brief description of the Court is given, describing the reasons for choosing the Court for this case study. The work of the Court is framed as taking place in two modes: Front of house, where the courtroom itself is, and backstage, where documents are processed and the business of the court is recorded and encoded into various systems.----- Caricatured contrasting scenarios describing the introduction of ASR to the front of house are presented and then analysed. These scenarios show that the introduction of ASR to the court would be highly problematic.----- The final section describes how ASR could be re-imagined in order to make it useful for the court. A final scenario is presented that describes how this re-imagined ASR could be integrated into both the front of house and backstage of the court in a way that could strengthen both processes.
Resumo:
Presbyopia affects individuals from the age of 45 years onwards, resulting in difficulty in accurately focusing on near objects. There are many optical corrections available including spectacles or contact lenses that are designed to enable presbyopes to see clearly at both far and near distances. However, presbyopic vision corrections also disturb aspects of visual function under certain circumstances. The impact of these changes on activities of daily living such as driving are, however, poorly understood. Therefore, the aim of this study was to determine which aspects of driving performance might be affected by wearing different types of presbyopic vision corrections. In order to achieve this aim, three experiments were undertaken. The first experiment involved administration of a questionnaire to compare the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections. The questionnaire was developed and piloted, and included a series of items regarding difficulties experienced while driving under day and night-time conditions. Two hundred and fifty five presbyopic patients responded to the questionnaire and were categorised into five groups, including those wearing no vision correction for driving (n = 50), bifocal spectacles (BIF, n = 54), progressive addition lenses spectacles (PAL, n = 50), monovision (MV, n = 53) and multifocal contact lenses (MTF CL, n = 48). Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, MV and MTF CL wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly with regard to disturbances from glare and haloes. Progressive addition lens wearers noticed more distortion of peripheral vision, while BIF wearers reported more difficulties with tasks requiring changes in focus and those who wore no vision correction for driving reported problems with intermediate and near tasks. Overall, the mean level of satisfaction for daytime driving was quite high for all of the groups (over 80%), with the BIF wearers being the least satisfied with their vision for driving. Conversely, at night, MTF CL wearers expressed the least satisfaction. Research into eye and head movements has become increasingly of interest in driving research as it provides a means of understanding how the driver responds to visual stimuli in traffic. Previous studies have found that wearing PAL can affect eye and head movement performance resulting in slower eye movement velocities and longer times to stabilize the gaze for fixation. These changes in eye and head movement patterns may have implications for driving safety, given that the visual tasks for driving include a range of dynamic search tasks. Therefore, the second study was designed to investigate the influence of different presbyopic corrections on driving-related eye and head movements under standardized laboratory-based conditions. Twenty presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision reading spectacles, were recruited. Each participant wore five different types of vision correction: single vision distance lenses (SV), PAL, BIF, MV and MTF CL. For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle and identify a series of peripherally presented targets while their eye and head movements were recorded using the faceLAB® eye and head tracking system. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). The results demonstrated that the path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL. The path length of head movements was greater with SV, BIF and PAL than MV and MTF CL. Target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze, regardless of vision correction type. The third experiment aimed to investigate the real world driving performance of presbyopes while wearing different vision corrections measured on a closed-road circuit at night-time. Eye movements were recorded using the ASL Mobile Eye, eye tracking system (as the faceLAB® system proved to be impractical for use outside of the laboratory). Eleven participants (mean age: 57.25 ± 5.78 years) were fitted with four types of prescribed vision corrections (SV, PAL, MV and MTF CL). The measures of driving performance on the closed-road circuit included distance to sign recognition, near target recognition, peripheral light-emitting-diode (LED) recognition, low contrast road hazards recognition and avoidance, recognition of all the road signs, time to complete the course, and driving behaviours such as braking, accelerating, and cornering. The results demonstrated that driving performance at night was most affected by MTF CL compared to PAL, resulting in shorter distances to read signs, slower driving speeds, and longer times spent fixating road signs. Monovision resulted in worse performance in the task of distance to read a signs compared to SV and PAL. The SV condition resulted in significantly more errors made in interpreting information from in-vehicle devices, despite spending longer time fixating on these devices. Progressive addition lenses were ranked as the most preferred vision correction, while MTF CL were the least preferred vision correction for night-time driving. This thesis addressed the research question of how presbyopic vision corrections affect driving performance and the results of the three experiments demonstrated that the different types of presbyopic vision corrections (e.g. BIF, PAL, MV and MTF CL) can affect driving performance in different ways. Distance-related driving tasks showed reduced performance with MV and MTF CL, while tasks which involved viewing in-vehicle devices were significantly hampered by wearing SV corrections. Wearing spectacles such as SV, BIF and PAL induced greater eye and head movements in the simulated driving condition, however this did not directly translate to impaired performance on the closed- road circuit tasks. These findings are important for understanding the influence of presbyopic vision corrections on vision under real world driving conditions. They will also assist the eye care practitioner to understand and convey to patients the potential driving difficulties associated with wearing certain types of presbyopic vision corrections and accordingly to support them in the process of matching patients to optical corrections which meet their visual needs.
Resumo:
Automatic Speech Recognition (ASR) has matured into a technology which is becoming more common in our everyday lives, and is emerging as a necessity to minimise driver distraction when operating in-car systems such as navigation and infotainment. In “noise-free” environments, word recognition performance of these systems has been shown to approach 100%, however this performance degrades rapidly as the level of background noise is increased. Speech enhancement is a popular method for making ASR systems more ro- bust. Single-channel spectral subtraction was originally designed to improve hu- man speech intelligibility and many attempts have been made to optimise this algorithm in terms of signal-based metrics such as maximised Signal-to-Noise Ratio (SNR) or minimised speech distortion. Such metrics are used to assess en- hancement performance for intelligibility not speech recognition, therefore mak- ing them sub-optimal ASR applications. This research investigates two methods for closely coupling subtractive-type enhancement algorithms with ASR: (a) a computationally-efficient Mel-filterbank noise subtraction technique based on likelihood-maximisation (LIMA), and (b) in- troducing phase spectrum information to enable spectral subtraction in the com- plex frequency domain. Likelihood-maximisation uses gradient-descent to optimise parameters of the enhancement algorithm to best fit the acoustic speech model given a word se- quence known a priori. Whilst this technique is shown to improve the ASR word accuracy performance, it is also identified to be particularly sensitive to non-noise mismatches between the training and testing data. Phase information has long been ignored in spectral subtraction as it is deemed to have little effect on human intelligibility. In this work it is shown that phase information is important in obtaining highly accurate estimates of clean speech magnitudes which are typically used in ASR feature extraction. Phase Estimation via Delay Projection is proposed based on the stationarity of sinusoidal signals, and demonstrates the potential to produce improvements in ASR word accuracy in a wide range of SNR. Throughout the dissertation, consideration is given to practical implemen- tation in vehicular environments which resulted in two novel contributions – a LIMA framework which takes advantage of the grounding procedure common to speech dialogue systems, and a resource-saving formulation of frequency-domain spectral subtraction for realisation in field-programmable gate array hardware. The techniques proposed in this dissertation were evaluated using the Aus- tralian English In-Car Speech Corpus which was collected as part of this work. This database is the first of its kind within Australia and captures real in-car speech of 50 native Australian speakers in seven driving conditions common to Australian environments.
Resumo:
Principal Topic: Project structures are often created by entrepreneurs and large corporate organizations to develop new products. Since new product development projects (NPDP) are more often situated within a larger organization, intrapreneurship or corporate entrepreneurship plays an important role in bringing these projects to fruition. Since NPDP often involves the development of a new product using immature technology, we describe development of an immature technology. The Joint Strike Fighter (JSF) F-35 aircraft is being developed by the U.S. Department of Defense and eight allied nations. In 2001 Lockheed Martin won a $19 billion contract to develop an affordable, stealthy and supersonic all-weather strike fighter designed to replace a wide range of aging fighter aircraft. In this research we define a complex project as one that demonstrates a number of sources of uncertainty to a degree, or level of severity, that makes it extremely difficult to predict project outcomes, to control or manage project (Remington & Zolin, Forthcoming). Project complexity has been conceptualized by Remington and Pollock (2007) in terms of four major sources of complexity; temporal, directional, structural and technological complexity (See Figure 1). Temporal complexity exists when projects experience significant environmental change outside the direct influence or control of the project. The Global Economic Crisis of 2008 - 2009 is a good example of the type of environmental change that can make a project complex as, for example in the JSF project, where project managers attempt to respond to changes in interest rates, international currency exchange rates and commodity prices etc. Directional complexity exists in a project where stakeholders' goals are unclear or undefined, where progress is hindered by unknown political agendas, or where stakeholders disagree or misunderstand project goals. In the JSF project all the services and all non countries have to agree to the specifications of the three variants of the aircraft; Conventional Take Off and Landing (CTOL), Short Take Off/Vertical Landing (STOVL) and the Carrier Variant (CV). Because the Navy requires a plane that can take off and land on an aircraft carrier, that required a special variant of the aircraft design, adding complexity to the project. Technical complexity occurs in a project using technology that is immature or where design characteristics are unknown or untried. Developing a plane that can take off on a very short runway and land vertically created may highly interdependent technological challenges to correctly locate, direct and balance the lift fans, modulate the airflow and provide equivalent amount of thrust from the downward vectored rear exhaust to lift the aircraft and at the same time control engine temperatures. These technological challenges make costing and scheduling equally challenging. Structural complexity in a project comes from the sheer numbers of elements such as the number of people, teams or organizations involved, ambiguity regarding the elements, and the massive degree of interconnectedness between them. While Lockheed Martin is the prime contractor, they are assisted in major aspects of the JSF development by Northrop Grumman, BAE Systems, Pratt & Whitney and GE/Rolls-Royce Fighter Engineer Team and innumerable subcontractors. In addition to identifying opportunities to achieve project goals, complex projects also need to identify and exploit opportunities to increase agility in response to changing stakeholder demands or to reduce project risks. Complexity Leadership Theory contends that in complex environments adaptive and enabling leadership are needed (Uhl-Bien, Marion and McKelvey, 2007). Adaptive leadership facilitates creativity, learning and adaptability, while enabling leadership handles the conflicts that inevitably arise between adaptive leadership and traditional administrative leadership (Uhl-Bien and Marion, 2007). Hence, adaptive leadership involves the recognition and opportunities to adapt, while and enabling leadership involves the exploitation of these opportunities. Our research questions revolve around the type or source of complexity and its relationship to opportunity recognition and exploitation. For example, is it only external environmental complexity that creates the need for the entrepreneurial behaviours, such as opportunity recognition and opportunity exploitation? Do the internal dimensions of project complexity, such as technological and structural complexity, also create the need for opportunity recognition and opportunity exploitation? The Kropp, Zolin and Lindsay model (2009) describes a relationship between entrepreneurial orientation (EO), opportunity recognition (OR), and opportunity exploitation (OX) in complex projects, with environmental and organizational contextual variables as moderators. We extend their model by defining the affects of external complexity and internal complexity on OR and OX. ---------- Methodology/Key Propositions: When the environment complex EO is more likely to result in OR because project members will be actively looking for solutions to problems created by environmental change. But in projects that are technologically or structurally complex project leaders and members may try to make the minimum changes possible to reduce the risk of creating new problems due to delays or schedule changes. In projects with environmental or technological complexity project leaders who encourage the innovativeness dimension of EO will increase OR in complex projects. But projects with technical or structural complexity innovativeness will not necessarily result in the recognition and exploitation of opportunities due to the over-riding importance of maintaining stability in the highly intricate and interconnected project structure. We propose that in projects with environmental complexity creating the need for change and innovation project leaders, who are willing to accept and manage risk, are more likely to identify opportunities to increase project effectiveness and efficiency. In contrast in projects with internal complexity a much higher willingness to accept risk will be necessary to trigger opportunity recognition. In structurally complex projects we predict it will be less likely to find a relationship between risk taking and OP. When the environment is complex, and a project has autonomy, they will be motivated to execute opportunities to improve the project's performance. In contrast, when the project has high internal complexity, they will be more cautious in execution. When a project experiences high competitive aggressiveness and their environment is complex, project leaders will be motivated to execute opportunities to improve the project's performance. In contrast, when the project has high internal complexity, they will be more cautious in execution. This paper reports the first stage of a three year study into the behaviours of managers, leaders and team members of complex projects. We conduct a qualitative study involving a Group Discussion with experienced project leaders. The objective is to determine how leaders of large and potentially complex projects perceive that external and internal complexity will influence the affects of EO on OR. ---------- Results and Implications: These results will help identify and distinguish the impact of external and internal complexity on entrepreneurial behaviours in NPDP. Project managers will be better able to quickly decide how and when to respond to changes in the environment and internal project events.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
Motion has been examined in biology to be a critical component for obstacle avoidance and navigation. In particular, optical flow is a powerful motion cue that has been exploited in many biological systems for survival. In this paper, we investigate an obstacle detection system that uses optical flow to obtain range information to objects. Our experimental results demonstrate that optical flow is capable of providing good obstacle information but has obvious failure modes. We acknowledge that our optical flow system has certain disadvantages and cannot be solely used for navigation. Instead, we believe that optical flow is a critical visual subsystem used when moving at reason- able speeds. When combined with other visual subsystems, considerable synergy can result.