247 resultados para Oceanography -- measurement
Resumo:
Understanding the relationship between diet, physical activity and health in humans requires accurate measurement of body composition and daily energy expenditure. Stable isotopes provide a means of measuring total body water and daily energy expenditure under free-living conditions. While the use of isotope ratio mass spectrometry (IRMS) for the analysis of 2H (Deuterium) and 18O (Oxygen-18) is well established in the field of human energy metabolism research, numerous questions remain regarding the factors which influence analytical and measurement error using this methodology. This thesis was comprised of four studies with the following emphases. The aim of Study 1 was to determine the analytical and measurement error of the IRMS with regard to sample handling under certain conditions. Study 2 involved the comparison of TEE (Total daily energy expenditure) using two commonly employed equations. Further, saliva and urine samples, collected at different times, were used to determine if clinically significant differences would occur. Study 3 was undertaken to determine the appropriate collection times for TBW estimates and derived body composition values. Finally, Study 4, a single case study to investigate if TEE measures are affected when the human condition changes due to altered exercise and water intake. The aim of Study 1 was to validate laboratory approaches to measure isotopic enrichment to ensure accurate (to international standards), precise (reproducibility of three replicate samples) and linear (isotope ratio was constant over the expected concentration range) results. This established the machine variability for the IRMS equipment in use at Queensland University for both TBW and TEE. Using either 0.4mL or 0.5mL sample volumes for both oxygen-18 and deuterium were statistically acceptable (p>0.05) and showed a within analytical variance of 5.8 Delta VSOW units for deuterium, 0.41 Delta VSOW units for oxygen-18. This variance was used as “within analytical noise” to determine sample deviations. It was also found that there was no influence of equilibration time on oxygen-18 or deuterium values when comparing the minimum (oxygen-18: 24hr; deuterium: 3 days) and maximum (oxygen-18: and deuterium: 14 days) equilibration times. With regard to preparation using the vacuum line, any order of preparation is suitable as the TEE values fall within 8% of each other regardless of preparation order. An 8% variation is acceptable for the TEE values due to biological and technical errors (Schoeller, 1988). However, for the automated line, deuterium must be assessed first followed by oxygen-18 as the automated machine line does not evacuate tubes but merely refills them with an injection of gas for a predetermined time. Any fractionation (which may occur for both isotopes), would cause a slight elevation in the values and hence a lower TEE. The purpose of the second and third study was to investigate the use of IRMS to measure the TEE and TBW of and to validate the current IRMS practices in use with regard to sample collection times of urine and saliva, the use of two TEE equations from different research centers and the body composition values derived from these TEE and TBW values. Following the collection of a fasting baseline urine and saliva sample, 10 people (8 women, 2 men) were dosed with a doubly labeled water does comprised of 1.25g 10% oxygen-18 and 0.1 g 100% deuterium/kg body weight. The samples were collected hourly for 12 hrs on the first day and then morning, midday, and evening samples were collected for the next 14 days. The samples were analyzed using an isotope ratio mass spectrometer. For the TBW, time to equilibration was determined using three commonly employed data analysis approaches. Isotopic equilibration was reached in 90% of the sample by hour 6, and in 100% of the sample by hour 7. With regard to the TBW estimations, the optimal time for urine collection was found to be between hours 4 and 10 as to where there was no significant difference between values. In contrast, statistically significant differences in TBW estimations were found between hours 1-3 and from 11-12 when compared with hours 4-10. Most of the individuals in this study were in equilibrium after 7 hours. The TEE equations of Prof Dale Scholler (Chicago, USA, IAEA) and Prof K.Westerterp were compared with that of Prof. Andrew Coward (Dunn Nutrition Centre). When comparing values derived from samples collected in the morning and evening there was no effect of time or equation on resulting TEE values. The fourth study was a pilot study (n=1) to test the variability in TEE as a result of manipulations in fluid consumption and level of physical activity; the magnitude of change which may be expected in a sedentary adult. Physical activity levels were manipulated by increasing the number of steps per day to mimic the increases that may result when a sedentary individual commences an activity program. The study was comprised of three sub-studies completed on the same individual over a period of 8 months. There were no significant changes in TBW across all studies, even though the elimination rates changed with the supplemented water intake and additional physical activity. The extra activity may not have sufficiently strenuous enough and the water intake high enough to cause a significant change in the TBW and hence the CO2 production and TEE values. The TEE values measured show good agreement based on the estimated values calculated on an RMR of 1455 kcal/day, a DIT of 10% of TEE and activity based on measured steps. The covariance values tracked when plotting the residuals were found to be representative of “well-behaved” data and are indicative of the analytical accuracy. The ratio and product plots were found to reflect the water turnover and CO2 production and thus could, with further investigation, be employed to identify the changes in physical activity.
Resumo:
In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.
Resumo:
The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.
Resumo:
The concept of system use has suffered from a "too simplistic definition" (DeLone and McLean [9], p. 16). This paper reviews various attempts at conceptualization and measurement of system use and then proposes a re-conceptualization of it as "the level of incorporation of an information system within a user's processes." We then go on to develop the concept of a Functional Interface Point and four dimensions of system usage: automation level, the proportion of the business process encoded by the information system; extent, the proportion of the FIPs used by the business process; frequency, the rate at which FIPs are used by the participants in the process; and thoroughness, the level of use of information/functionality provided by the system at an FIP. The article concludes with a discussion of some implications of this re-conceptualization and areas for follow on research.
Resumo:
Organizations invest heavily in Customer Relationship Management (CRM) and Supply Chain Management (SCM) systems, and their related infrastructure, presumably expecting positive benefits to the organization. Assessing the benefits of such systems is an important aspect of managing such systems. Given the substantial differences between CRM and SCM systems with traditional intra-organizational applications, existing Information Systems benefits measurement models and frameworks are ill-suited to gauge CRM and SCM benefits. This paper reports the preliminary findings of a research that seeks to develop a measurement model to assess benefits of CRM and SCM applications. The a-priori benefits measurement model is developed reviewing the 55 academic studies and 40 practitioner papers. The review of related literature yielded 606 benefits, which were later synthesized into 74 mutually exclusive benefit measures of CRM and SCM applications arranged under five dimensions.
Resumo:
Background: To compare the intraocular pressure readings obtained with the iCare rebound tonometer and the 7CR non-contact tonometer with those measured by Goldmann applanation tonometry in treated glaucoma patients. Design: A prospective, cross sectional study was conducted in a private tertiary glaucoma clinic. Participants: 109 (54M:55F) patients including only eyes under medical treatment for glaucoma. Methods: Measurement by Goldmann applanation tonometry, iCare rebound tonometry and 7CR non-contact tonometry. Main Outcome Measures: Intraocular pressure. Results: There were strong correlations between the intraocular pressure measurements obtained with Goldmann and both the rebound and non-contact tonometers (Spearman r values ≥ 0.79, p < 0.001). However, there were small, statistically significant differences between the average readings for each tonometer. For the rebound tonometer, the mean intraocular pressure was slightly higher compared to the Goldmann applanation tonometer in the right eyes (p = 0.02), and similar in the left eyes (p = 0.93) however these differences did not reach statistical significance. The Goldmann correlated measurements from the noncontact tonometer were lower than the average Goldmann reading for both right (p < 0.001) and left (p > 0.01) eyes. The corneal compensated measurements from the non-contact tonometer were significantly higher compared to the other tonometers (p ≤ 0.001). Conclusions: The iCare rebound tonometer and the 7CR non-contact tonometer measure IOP in fundamentally different ways to the Goldmann applanation tonometer. The resulting IOP values vary between the instruments and will need to be considered when comparing clinical versus home acquired measurements.
Resumo:
In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short and long terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fiber-optic technologies, fiber Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, using FBG sensors is proposed to develop a simple, inexpensive and practical method to measure vertical displacements of bridges. A curvature approach for vertical displacement measurement using curvature measurements is proposed. In addition, with the successful development of a FBG tilt sensors, an inclination approach is also proposed using inclination measurements. A series of simulation tests of a full-scale bridge was conducted. It shows that both the approaches can be implemented to determine vertical displacements for bridges with various support conditions, varying stiffness (EI) along the spans and without any prior known loading. These approaches can thus measure vertical displacements for most of slab-on-girder and box-girder bridges. Moreover, with the advantages of FBG sensors, they can be implemented to monitor bridge behavior remotely and in real time. Further recommendations of these approaches for developments will also be discussed at the end of the paper.
Resumo:
Increasing global competitiveness worldwide has forced manufacturing organizations to produce high-quality products more quickly and at a competitive cost. In order to reach these goals, they need good quality components from suppliers at optimum price and lead time. This actually forced all the companies to adapt different improvement practices such as lean manufacturing, Just in Time (JIT) and effective supply chain management. Applying new improvement techniques and tools cause higher establishment costs and more Information Delay (ID). On the contrary, these new techniques may reduce the risk of stock outs and affect supply chain flexibility to give a better overall performance. But industry people are unable to measure the overall affects of those improvement techniques with a standard evaluation model .So an effective overall supply chain performance evaluation model is essential for suppliers as well as manufacturers to assess their companies under different supply chain strategies. However, literature on lean supply chain performance evaluation is comparatively limited. Moreover, most of the models assumed random values for performance variables. The purpose of this paper is to propose an effective supply chain performance evaluation model using triangular linguistic fuzzy numbers and to recommend optimum ranges for performance variables for lean implementation. The model initially considers all the supply chain performance criteria (input, output and flexibility), converts the values to triangular linguistic fuzzy numbers and evaluates overall supply chain performance under different situations. Results show that with the proposed performance measurement model, improvement area for each variable can be accurately identified.
Resumo:
Inter-Vehicular Communications (IVC) are considered a promising technological approach for enhancing transportation safety and improving highway efficiency. Previous theoretical work has demonstrated the benefits of IVC in vehicles strings. Simulations of partially IVC-equipped vehicles strings showed that only a small equipment ratio is sufficient to drastically reduce the number of head on collisions. However, these results are based on the assumptions that IVC exhibit lossless and instantaneous messages transmission. This paper presents the research design of an empirical measurement of a vehicles string, with the goal of highlighting the constraints introduced by the actual characteristics of communication devices. A warning message diffusion system based on IEEE 802.11 wireless technology was developed for an emergency breaking scenario. Preliminary results are presented as well, showing the latencies introduced by using 802.11a and discussing early findings and experimental limitations