108 resultados para ONE-DIMENSIONAL CONDUCTION
Resumo:
Synthesis of one-dimensional AlN nanostructures commonly requires high process temperatures (>900 °C), metal catalyst, and hazardous gas/powder precursors. We report on a simple, single-step, catalyst-free, plasma-assisted growth of dense patterns of size-uniform single-crystalline AlN nanorods at a low substrate temperature (∼650 °C) without any catalyst or hazardous precursors. This unusual growth mechanism is based on highly effective plasma dissociation of N2 molecules, localized species precipitation on AlN islands, and reduced diffusion on the nitrogen-rich surface. This approach can also be used to produce other high-aspect-ratio oxide and nitride nanostructures for applications in energy conversion, sensing, and optoelectronics. © 2010 American Institute of Physics.
Resumo:
Plasma Nanoscience is a multidisciplinary research field which aims to elucidate the specific roles, purposes, and benefits of the ionized gas environment in assembling and processing nanoscale objects in natural, laboratory and technological situations. Compared to neutral gas-based routes, in low-temperature weakly-ionized plasmas there is another level of complexity related to the necessity of creating and sustaining a suitable degree of ionization and a much larger number of species generated in the gas phase. The thinner the nanotubes, the stronger is the quantum confinement of electrons and more unique size-dependent quantum effects can emerge. Furthermore, due to a very high mobility of electrons, the surfaces are at a negative potential compared to the plasma bulk. Therefore, there are non-uniform electric fields within the plasma sheath. The electric field lines start in the plasma bulk and converge to the sharp tips of the developing one-dimensional nanostructures.
Resumo:
The results of studies on the growth of high-aspect nanostructures in low-temperature non-equilibrium plasmas of reactive gas mixtures with or without hydrogen are presented. The results suggest that the hydrogen in the reactive plasma strongly affects the length of the nanostructures. This phenomenon is explained in terms of selective hydrogen passivation of the lateral and top surfaces of the surface-supported nanostructures. The theoretical model describes the effect of the atomic hydrogen passivation on the nanostructure shape and predicts the critical hydrogen coverage of the lateral surfaces necessary to achieve the nanostructure growth with the pre-determined shape. Our results demonstrate that the use of a strongly non-equilibrium plasma is very effective in significantly improving the shape control of quasi-one-dimensional single-crystalline nanostructures.
Resumo:
Optimisation is a fundamental step in the turbine design process, especially in the development of non-classical designs of radial-inflow turbines working with high-density fluids in low-temperature Organic Rankine Cycles (ORCs). The present work discusses the simultaneous optimisation of the thermodynamic cycle and the one-dimensional design of radial-inflow turbines. In particular, the work describes the integration between a 1D meanline preliminary design code adapted to real gases and the performance estimation approach for radial-inflow turbines in an established ORC cycle analysis procedure. The optimisation approach is split in two distinct loops; the inner operates on the 1D design based on the parameters received from the outer loop, which optimises the thermodynamic cycle. The method uses parameters including brine flow rate, temperature and working fluid, shifting assumptions such as head and flow coefficients into the optimisation routine. The discussed design and optimisation method is then validated against published benchmark cases. Finally, using the same conditions, the coupled optimisation procedure is extended to the preliminary design of a radial-inflow turbine with R143a as working fluid in realistic geothermal conditions and compared against results from commercially-available software RITAL from Concepts-NREC.
Resumo:
We consider a discrete agent-based model on a one-dimensional lattice, where each agent occupies L sites and attempts movements over a distance of d lattice sites. Agents obey a strict simple exclusion rule. A discrete-time master equation is derived using a mean-field approximation and careful probability arguments. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy are obtained. Averaged discrete simulation data are generated and shown to compare very well with the solution to the derived nonlinear diffusion equations. This framework allows us to approach a lattice-free result using all the advantages of lattice methods. Since different cell types have different shapes and speeds of movement, this work offers insight into population-level behavior of collective cellular motion.
Resumo:
We consider a discrete agent-based model on a one-dimensional lattice and a two-dimensional square lattice, where each agent is a dimer occupying two sites. Agents move by vacating one occupied site in favor of a nearest-neighbor site and obey either a strict simple exclusion rule or a weaker constraint that permits partial overlaps between dimers. Using indicator variables and careful probability arguments, a discrete-time master equation for these processes is derived systematically within a mean-field approximation. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy of the dimer population are obtained. In addition, we show that multiple species of interacting subpopulations give rise to advection-diffusion equations. Averaged discrete simulation data compares very well with the solution to the continuum partial differential equation models. Since many cell types are elongated rather than circular, this work offers insight into population-level behavior of collective cellular motion.
Resumo:
Background: The Lower Limb Functional Index (LLFI) is a relatively recently published regional outcome measure. The development article showed the LLFI had robust and valid clinimetric properties with sound psychometric and practical characteristics when compared to the Lower Limb Extremity Scale (LEFS) criterion standard. Objective: The purpose of this study was cross cultural adaptation and validation of the LLFI Spanish-version (LLFI-Sp) in a Spanish population. Methods: A two stage observational study was conducted. The LLFI was initially cross-culturally adapted to Spanish through double forward and single backward translation; then subsequently validated for the psychometric characteristics of validity, internal consistency, reliability, error score and factor structure. Participants (n = 136) with various lower limb conditions of >12 weeks duration completed the LLFI-Sp, Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and the Euroqol Health Questionnaire 5 Dimensions (EQ-5D-3 L). The full sample was employed to determine internal consistency, concurrent criterion validity, construct validity and factor structure; a subgroup (n = 45) determined reliability at seven days concurrently completing a global rating of change scale. Results: The LLFI-Sp demonstrated high but not excessive internal consistency (α = 0.91) and high reliability (ICC = 0.96). The factor structure was one-dimensional which supported the construct validity. Criterion validity with the WOMAC was strong (r = 0.77) and with the EQ-5D-3 L fair and inversely correlated (r = -0.62). The study limitations included the lack of longitudinal data and the determination of responsiveness. Conclusions: The LLFI-Sp supports the findings of the original English version as being a valid lower limb regional outcome measure. It demonstrated similar psychometric properties for internal consistency, validity, reliability, error score and factor structure.
Resumo:
Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction–diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly.
Resumo:
Background The Upper Limb Functional Index (ULFI) is an internationally widely used outcome measure with robust, valid psychometric properties. The purpose of study is to develop and validate a ULFI Spanish-version (ULFI-Sp). Methods A two stage observational study was conducted. The ULFI was cross-culturally adapted to Spanish through double forward and backward translations, the psychometric properties were then validated. Participants (n = 126) with various upper limb conditions of >12 weeks duration completed the ULFI-Sp, QuickDASH and the Euroqol Health Questionnaire 5 Dimensions (EQ-5D-3 L). The full sample determined internal consistency, concurrent criterion validity, construct validity and factor structure; a subgroup (n = 35) determined reliability at seven days. Results The ULFI-Sp demonstrated high internal consistency (α = 0.94) and reliability (r = 0.93). Factor structure was one-dimensional and supported construct validity. Criterion validity with the EQ-5D-3 L was fair and inversely correlated (r = −0.59). The QuickDASH data was unavailable for analysis due to excessive missing responses. Conclusions The ULFI-Sp is a valid upper limb outcome measure with similar psychometric properties to the English language version.
Resumo:
This paper aims to develop a meshless approach based on the Point Interpolation Method (PIM) for numerical simulation of a space fractional diffusion equation. Two fully-discrete schemes for the one-dimensional space fractional diffusion equation are obtained by using the PIM and the strong-forms of the space diffusion equation. Numerical examples with different nodal distributions are studied to validate and investigate the accuracy and efficiency of the newly developed meshless approach.
Resumo:
The structures of the 1:1 co-crystalline adduct C8H6BrN3S . C7H5NO4 (I) and the salt C8H7BrN3S+ C7H3N2O7- (II) from the interaction of 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine with 4-nitrobenzoic acid and 3,5-dinitrosalicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R2/2(8) (N-H...O/O-H...O) or (N-H...O/N-H...O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [dihedral angles between the thiadiazole ring and the two phenyl rings are 2.1(3)deg. (intra) and 9.8(2)deg. (inter)], while in (I) these angles are 22.11(15) and 26.08(18)deg., respectively. In the crystal of (I), the heterodimers are extended into a one-dimensional chain along b through an amine N-...N(thiadiazole) hydrogen bond but in (II), a centrosymmetric cyclic heterotetramer structure is generated through N-H...O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R2/2(8) interaction, conjoined R4/6(12), R2/1(6) and S(6) ring motifs. Also present in (I) are pi--pi interactions between thiadiazole rings [minimum ring centroid separation, 3.4624(16)deg.] as well as short Br...O(nitro) interactions in both (I) and (II) [3.296(3)A and 3.104(3)A, respectively].
Resumo:
In the structure of the title compound, (C10H18N2)2+, 2(NO3)-, the nitrate salt of 4-(N,N-diethylamino)aniline, the two ethyl groups lie almost perpendicular to the plane of the benzene ring [ring to ethyl C-C-N-C torsion angles, -59.5(2) and 67.5(3)deg.]. The aminium groups of the cation form inter-species N-H...O hydrogen bonds with the nitro O-atoms of both anions giving one-dimensional chains extending along c and are extended into a two-dimensional network structure lying parallel to (010). Weak C-H...O hydrogen-bonding associations are also present.
Resumo:
The anhydrous salts of 1H-indole-3-ethanamine (tryptamine) with isomeric (2,4-dichlorophenoxy)acetic acid (2,4-D) and (3,5-dichlorophenoxy)acetic (3,5-D), C10H13N2+ (C8H5Cl2O3)-, [(I) and (II), respectively] have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I),the aminium H-atoms are involved in three separate inter-species N-H...O hydrogen-bonding interactions, two with carboxyl O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl O,O' chelate [graph set R2/1(4)]. The indole H-atom forms an N-H...O~carboxyl~ hydrogen bond, extending the chain structure along the b axial direction. In (II), two of the three aminium H-atoms are also involved in N-H...O(carboxyl) hydrogen bonds similar to (I) but with the third, a three-centre asymmetric interaction with carboxyl and phenoxy O-atoms is found [graph set R2/1(5)]. The chain polymeric extension is also along b. There are no pi--pi ring interactions in either of the structures. The aminium side chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts.
Resumo:
In this work we discuss the development of a mathematical model to predict the shift in gas composition observed over time from a producing CSG (coal seam gas) well, and investigate the effect that physical properties of the coal seam have on gas production. A detailed (local) one-dimensional, two-scale mathematical model of a coal seam has been developed. The model describes the competitive adsorption and desorption of three gas species (CH4, CO2 and N2) within a microscopic, porous coal matrix structure. The (diffusive) flux of these gases between the coal matrices (microscale) and a cleat network (macroscale) is accounted for in the model. The cleat network is modelled as a one-dimensional, volume averaged, porous domain that extends radially from a central well. Diffusive and advective transport of the gases occurs within the cleat network, which also contains liquid water that can be advectively transported. The water and gas phases are assumed to be immiscible. The driving force for the advection in the gas and liquid phases is taken to be a pressure gradient with capillarity also accounted for. In addition, the relative permeabilities of the water and gas phases are considered as functions of the degree of water saturation.