104 resultados para Niobium electrolytic capacitor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the predictions, the true potential of Nb2O5 for electrochromic applications has yet to be fully realized. In this work, three-dimensional (3D) compact and well-ordered nanoporous Nb2O5 films are synthesized by the electrochemical anodization of niobium thin films. These films are formed using RF sputtering and then anodized in an electrolyte containing ethylene glycol, ammonium fluoride, and small water content (4%) at 50 °C which resulted in low embedded impurities within the structure. Characterization of the anodized films shows that a highly crystalline orthorhombic phase of Nb2O5 is obtained after annealing at 450 °C. The 3D structure provides a template consisting of a large concentration of active sites for ion intercalation, while also ensuring low scattering directional paths for electrons. These features enhance the coloration efficiency to 47.0 cm2 C?1 (at 550 nm) for a 500 nm thick film upon Li+ ion intercalation. Additionally, the Nb2O5 electrochromic device shows a high bleached state transparency and large optical modulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to compare the performances of the highly porous Nb2O5 Schottky based sensors formed using different catalytic metals for ethanol vapour sensing. The fabricated sensors consist of a fairly ordered nano-vein like porous Nb2O5 prepared via an elevated temperature anodization method. Subsequently, Pt, Pd and Au were sputtered as both Schottky contacts and catalysts for the comparative studies. These metals are chosen as they have large work functions in comparison to the electron affinity of the anodized Nb2O5. It is demonstrated that the device based on Pd/Nb2O5 Schottky contact has the highest sensitivity amongst the developed sensors. The sensing behaviors were studied in terms of the Schottky barrier height variations and properties of the metal catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct a two-scale mathematical model for modern, high-rate LiFePO4cathodes. We attempt to validate against experimental data using two forms of the phase-field model developed recently to represent the concentration of Li+ in nano-sized LiFePO4crystals. We also compare this with the shrinking-core based model we developed previously. Validating against high-rate experimental data, in which electronic and electrolytic resistances have been reduced is an excellent test of the validity of the crystal-scale model used to represent the phase-change that may occur in LiFePO4material. We obtain poor fits with the shrinking-core based model, even with fitting based on “effective” parameter values. Surprisingly, using the more sophisticated phase-field models on the crystal-scale results in poorer fits, though a significant parameter regime could not be investigated due to numerical difficulties. Separate to the fits obtained, using phase-field based models embedded in a two-scale cathodic model results in “many-particle” effects consistent with those reported recently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a capacitor-clamped three-level inverter-based supercapacitor direct integration scheme for wind energy conversion systems. The idea is to increase the capacitance of clamping capacitors with the use of supercapacitors and allow their voltage to vary within a defined range. Even though this unique approach eliminates the need of interfacing dc-dc converters for supercapacitors, the variable voltage operation brings about several challenges. The uneven distribution of space vectors is the major modulation challenge. A space vector modulation method is proposed in this paper to address this issue and to generate undistorted currents even in the presence of dynamic changes in supercapacitor voltages. A supercapacitor voltage equalization algorithm is also presented. Moreover, control strategies of the proposed system are discussed in detail. Simulation and experimental results are presented to verify the efficacy of the proposed system in suppressing short-term wind power fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of an originally developed catalytic sensor with a Nb2 O5 nanowire array at its outer surface to the varying density of O atoms is experimentally and numerically studied. This technique can be used to measure one order of magnitude lower densities of O atoms and achieve a stable linear response in a significantly broader pressure range compared to conventional catalytic probes with a flat surface. The nanostructured outer surface also acts as a thermal barrier against sensor overheating. This approach is generic and can be used for reactive species detection in other reactive gas environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalytic probes are used for plasma diagnostics in order to quantify the density of neutral atoms. The probe response primarily depends on the probe material and its surface morphology. Here we report on the design, operation and modelling of the response of niobium pentoxide sensors with a flat and nanowire (NW) surfaces. These sensors were used to detect neutral oxygen atoms in the afterglow region of an inductively coupled rf discharge in oxygen. A very different response of the flat-surface and NW probes to the varying densities of oxygen atoms was explained by modelling heat conduction and taking into account the associated temperature gradients. It was found that the nanostructure probe can measure in a broader range than the flat oxide probe due to an increase in the surface to volume ratio, and the presence of nanostructures which act as a thermal barrier against sensor overheating. These results can be used for the development of the new generation of catalytic probes for gas/discharge diagnostics in a range of industrial and environmental applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric-pressure microplasma-assisted electrochemistry was used to synthesize Ag nanoparticles (NPs) for plasmonic applications. It is shown that the size and dispersion of the nanoparticles can be controlled by variation of the microplasma-assisted electrochemical process parameters such as electrolyte concentration and temperature. Moreover, Ag NP synthesis is also achieved in the absence of a stabilizer, with additional control over the dispersion and NP formation possible. As the microplasma directly reduces Ag ions in solution, the incorporation of toxic reducing agents into the electrolytic solution is unnecessary, making this an environmentally friendly fabrication technique with strong potential for the design and growth of plasmonic nanostructures for a variety of applications. These experiments therefore link microplasma-assisted electrochemical synthesis parameters with plasmonic characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drive towards high efficiency wind energy conversion systems has resulted in almost all the modern wind turbines to operate in the variable speed mode which inevitably requires back-to-back power electronic converters to decouple generator dynamics from the grid. The aim of this paper is to present an analysis on suitable topologies for the generator-side converter (rectifier) of the back-to-back converter arrangement. Performance of the two most popular rectifier systems, namely, the passive diode bridge rectifier and the active six-switch two-level rectifier are taken as two extremes to evaluate other topologies presented in this paper. The other rectifier systems considered in this study include combinations of a diode bridge rectifier and electronic reactance(s), a combination of a rectifier and a dc-dc converter and a half controlled rectifier. Diode-clamped and capacitor-clamped three-level active rectifier topologies and their possible switch reductions are also discussed in relation to the requirements of modern high power wind energy conversion systems (WECSs). Simulation results are presented to support conclusion derived from this analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel battery direct integration scheme for renewable energy systems. The idea is to replace ordinary capacitors of a three-level flying-capacitor inverter by three battery banks to alleviate power fluctuations in renewable generation. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, the major problem with this approach is the uneven distribution of space vectors which is due to unavoidable unbalance in clamping voltages. A detailed analysis on the effects of this issue and a novel carrier based pulse width modulation method, which can generate undistorted currents even in the presence of unevenly distributed space vectors, are presented in this paper. A charge/discharge controller is also proposed for power sharing and state of charge balancing of battery banks. Simulation results are presented to verify the efficacy of the proposed system, modulation method and power sharing controller.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additional converters that are used to interface energy storage devices incur power losses as well as increased system cost and complexity. The need for additional converters can be eliminated if the grid side inverter can itself be effectively used as the interface for energy storage. This paper therefore proposes a technique whereby the grid side inverter can also be used as an interface to connect a supercapacitor energy storage for wind energy conversion systems. The proposed grid side inverter is formed by cascading a 3-level inverter and a 2-level inverter through a coupling transformer. The three-level inverter is the main inverter and it is powered by the rectified output of the wind turbine coupled AC generator while the 2-level auxiliary inverter is connected to the super capacitor bank that is used to compensate short term power fluctuations. Novel modulation and control techniques are proposed to address the problems associated with non-integer and dynamically-changing dc-link voltage ratio, which is caused by the random nature of wind. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-frequency-link (HFL) micro inverter with a front-end diode clamped multi-level inverter and a grid-connected half-wave cycloconverter is proposed. The diode clamped multi-level inverter with an auxiliary capacitor is used to generate high-frequency (HF) three level quasi square-wave output and it is fed into a series resonant tank to obtain high frequency continuous sinusoidal current. The obtained continuous sinusoidal current is modulated by using the grid-connected half-wave cycloconverter to obtain grid synchronized output current in phase with the grid voltage. The phase shift power modulation is used with auxiliary capacitor at the front-end multi-level inverter to have soft-switching. The phase shift between the HFL resonant current and half-wave cycloconverter input voltage is modulated to obtain grid synchronized output current.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel dc-link voltage regulation technique for a hybrid inverter system formed by cascading two 3-level inverters. The two inverters are named as “bulk inverter” and “conditioning inverter”. For the hybrid system to act as a nine level inverter, conditioning inverter dc link voltage should be maintained at one third of the bulk inverter dc link voltage. Since the conditioning inverter is energized by two series connected capacitors, dc-link voltage regulation should be carried out by controlling the capacitor charging/discharging times. A detailed analysis of conditioning inverter capacitor charging/discharging process and a simplified general rule, derived from the analysis, are presented in this paper. Time domain simulations were carried out to demonstrate efficacy of the proposed method on regulating the conditioning inverter dc-link voltage under various operating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the possibility of connecting two Wind Turbine Generators (WTG) to the grid using a single three level inverter. In the proposed system the rectified output of one WTG is connected across the upper dc-link capacitor of a standard diode clamped three level inverter. Similarly the rectified output of the other WTG is connected across the lower capacitor. This particular combination has several advantages such as, direct connection to the grid, reduced parts count, improved reliability and high power capacity. However, the major problem in the proposed system is the imminent imbalance of dc-link voltages. Under such conditions conventional modulation methods fail to produce desired voltage and current waveforms. A detailed analysis on this issue and a novel space vector modulation method, as the solution, are proposed in this paper. To track the Maximum power point of each WTG a power sharing algorithm is proposed. Simulation results are presented to attest the efficacy of the proposed system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The proposed scheme uses the popular dual inverter topology for grid connection as well as interfacing a supercapacitor bank. The dual inverter system is formed by cascading two 2-level inverters named as the “main inverter” and the “auxiliary inverter”. The main inverter is powered by the rectified output of a wind turbine coupled permanent magnet synchronous generator. The auxiliary inverter is directly connected to a super capacitor bank. This approach eliminates the need for an interfacing dc-dc converter for the supercapacitor bank and thus improves the overall efficiency. A detailed analysis on the effects of non-integer dynamically changing voltage ratio is presented. The concept of integrated boost rectifier is used to carry out the Maximum Power Point Tracking (MPPT) of the wind turbine generator. Another novel feature of this paper is the power reference adjuster which effectively manages capacitor charging and discharging at extreme conditions. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.