149 resultados para National System of Science and Technology
Resumo:
This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe BPEAnit. This probe is weakly fluorescent, but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases, at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start) and poor burning conditions. For particles produced by the logwood stove under cold-start conditions significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250oC resulted in an 80-100% reduction of the fluorescence signal of BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.
Resumo:
An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.
Resumo:
In mobile videos, small viewing size and bitrate limitation often cause unpleasant viewing experiences, which is particularly important for fast-moving sports videos. For optimizing the overall user experience of viewing sports videos on mobile phones, this paper explores the benefits of emphasizing Region of Interest (ROI) by 1) zooming in and 2) enhancing the quality. The main goal is to measure the effectiveness of these two approaches and determine which one is more effective. To obtain a more comprehensive understanding of the overall user experience, the study considers user’s interest in video content and user’s acceptance of the perceived video quality, and compares the user experience in sports videos with other content types such as talk shows. The results from a user study with 40 subjects demonstrate that zooming and ROI-enhancement are both effective in improving the overall user experience with talk show and mid-shot soccer videos. However, for the full-shot scenes in soccer videos, only zooming is effective while ROI-enhancement has a negative effect. Moreover, user’s interest in video content directly affects not only the user experience and the acceptance of video quality, but also the effect of content type on the user experience. Finally, the overall user experience is closely related to the degree of the acceptance of video quality and the degree of the interest in video content. This study is valuable in exploiting effective approaches to improve user experience, especially in mobile sports video streaming contexts, whereby the available bandwidth is usually low or limited. It also provides further understanding of the influencing factors of user experience.
Resumo:
Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
Internet and Web services have been used in both teaching and learning and are gaining popularity in today’s world. E-Learning is becoming popular and considered the latest advance in technology based learning. Despite the potential advantages for learning in a small country like Bhutan, there is lack of eServices at the Paro College of Education. This study investigated students’ attitudes towards online communities and frequency of access to the Internet, and how students locate and use different sources of information in their project tasks. Since improvement was at the heart of this research, an action research approach was used. Based on the idea of purposeful sampling, a semi-structured interview and observations were used as data collection instruments. 10 randomly selected students (5 girls and 5 boys) participated in this research as the controlled group. The study findings indicated that there is a lack of educational information technology services, such as e-learning at the college. Internet connection being very slow was the main barrier to learning using e-learning or accessing Internet resources. There is a strong relationship between the quality of written task and the source of the information, and between Web searching and learning. The source of information used in assignments and project work is limited to books in the library which are often outdated and of poor quality. Project tasks submitted by most of the students were of poor quality.
Resumo:
Thermally activated Palygorskite (Pg) has been found to be a good adsorbent material for ammonia (NH3) and sulfur dioxide (SO2). This research investigated the effect of thermal treatment on pore structure and surface acid-alkali properties of Pg through the adsorption-desorption of NH3 and SO2. The results showed that, up to 200 °C, the adsorption of NH3 on Pg was significantly higher than SO2. This was due to NH3 being adsorbed in the internal surface of Pg and forming hydrogen bonds (H-bonds) with coordinated water. The increase in thermal treatment temp. from 150 to 550 °C, showed a gradual decrease in the no. of surface acid sites, while the no. of surface alk. sites increased from 200 to 400 °C. The change of surface acidity-alk. sites is due to the collapse of internal channels of Pg and desorption of different types of hydroxyls assocd. with the Pg structure.
Resumo:
Populations of the Queensland fruit fly, Bactrocera tryoni, are routinely monitored using cue-lure, a male-only attractant. Such monitoring provides no information about females and there is little information available to show if male and female B. tryoni numbers are correlated in the field. Using a data set of 1 148 weekly clearances of orange-ammonia baited traps, which catch both males and females, the correlation between male and female numbers was tested for 48 weeks of the year (four weeks each month) and for the combined data set. Weekly male and female trap catches were almost entirely highly correlated, regardless of mean population size or time of year. For the whole year, the correlation between male and female numbers was r = 0.722, significant at p<0.001. Results suggest that changes in the number if male B. tryoni, as detected through cue-lure sampling, will reflect changes in numbers of female B. tryoni.
Resumo:
Hydrotalcites have been synthesised using three different pH solutions to assess the effect of pH on the uptake of arsenate and vanadate. The ability of these hydrotalcites to remove vanadate and arsenate from solution has been determined by ICP-OES. Raman spectroscopy is used to monitor changes in the anionic species for hydrotalcites synthesised at different pH values. The results show a reduction in the concentration of arsenate and vanadate anions that are removed in extremely alkaline solutions. Hydrotalcites containing arsenate and vanadate are stable in solutions up to pH 10. Exposure of these hydrotalcites to higher pH values results in the removal of large percentages of arsenate and vanadate from the hydrotalcite interlayer.
Resumo:
A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever (YF) vaccine (YF-17D strain; Stamaril(®), Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE virus strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.
Resumo:
Near infrared (NIR), infrared (IR) spectroscopy and X-ray diffraction (XRD) have been applied to halotrichites of the formula FeAl2(SO4)4∙22H2O and Fe2+Fe23+(SO4)4∙22H2O. Comparison of the halotrichites and their starting materials has been used to give a better understanding of the bonding involved in these types of minerals. The vibrational spectroscopy data has shown that Fe2+ oxidises during the formation of halotrichite, no preventative measures were implemented to prevent oxidation, and this has been clearly shown by the position and broadness of electronic bands of transition metals in the NIR spectra (12500 to 7500 cm-1). It is apparent from this region that Fe3+ substitutes for Al3+ in the synthesis of halotrichite. Due to the oxidation of Fe2+ to Fe3+ the halotrichite sample contains a small portion of bilinite. This has been confirmed by XRD, peaks at 9 and 14° 2θ were observed in the halotrichite sample and are identical to the XRD pattern obtained for bilinite. Substitution of aluminium for Fe3+ has resulted in significant changes in the overall infrared and NIR spectral profiles. However, the lower wavenumber regions of the NIR spectra have very similar spectral profiles, which indicate a similar structure to halotrichite has formed for bilinite. This work has shown that iron halotrichites can be synthesised and characterised by infrared and NIR spectroscopy.
Resumo:
Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75 to 300 µm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 µm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 was found to dominate SVOC and NVOC build-up on roads.
Resumo:
The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatlytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.
Resumo:
The effective removal of pollutants using a thermally and chemically stable substrate that has controllable absorption properties is a goal of water treatment. In this study, the surfaces of thin alumina (γ-Al2O3) nanofibres were modified by the grafting either of two organosilane agents, 3-chloro-propyl-triethoxysilane (CPTES) and octyl-triethoxysilane (OTES). These modified materials were then trialed as absorbents for the removal of two herbicides, alachlor and imazaquin from water. The formation of organic groups during the functionalisation process established super hydrophobic sites on the surfaces of the nanofibres. This super hydrophobic group is a kind of protruding adsorption site which facilitates the intimate contact with the pollutants. OTES grafted substrate were shown to be more selective for alachlor while imazaquin selectivity is shown by the CPTES grafted substrate. Kinetics studies revealed that imazaquin was rapidly adsorbed on CPTES-modified surfaces. However, the adsorption of alachlor by OTES grafted surface was achieved more slowly.
Resumo:
Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium-contg. HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa-HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa-HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa-HT) have been successfully synthesized and characterised by X-ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa-HT to 7.64 Å for the 3:1 ZnGa-HT. The 4:1 ZnGa-HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compds. Raman spectroscopy complemented with selected IR data has been used to characterize the synthesized gallium-contg. HTs. Raman bands obsd. at around 1050, 1060 and 1067 cm-1 are attributed to the sym. stretching modes of the (CO32-) units. Multiple ν3 (CO32-) antisym. stretching modes are found between 1350 and 1520 cm-1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands obsd. at 710 and 717 cm-1 and assigned to the ν4 (CO32-) modes support the concept of multiple carbonate species in the interlayer.