118 resultados para NEURAL CREST


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along with the tri-lineage of bone, cartilage and fat, human mesenchymal stem cells (hMSCs) retain neural lineage potential. Multiple factors have been described that influence lineage fate of hMSCs including the extracellular microenvironment or niche. The niche includes the extracellular matrix (ECM) providing structural composition, as well as other associated proteins and growth factors, which collectively influence hMSC stemness and lineage specification. As such, lineage specific differentiation of MSCs is mediated through interactions including cell–cell and cell–matrix, as well as through specific signalling pathways triggering downstream events. Proteoglycans (PGs) are ubiquitous within this microenvironment and can be localised to the cell surface or embedded within the ECM. In addition, the heparan sulfate (HS) and chondroitin sulfate (CS) families of PGs interact directly with a number of growth factors, signalling pathways and ECM components including FGFs, Wnts and fibronectin. With evidence supporting a role for HSPGs and CSPGs in the specification of hMSCs down the osteogenic, chondrogenic and adipogenic lineages, along with the localisation of PGs in development and regeneration, it is conceivable that these important proteins may also play a role in the differentiation of hMSCs toward the neuronal lineage. Here we summarise the current literature and highlight the potential for HSPG directed neural lineage fate specification in hMSCs, which may provide a new model for brain damage repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of artificial neural networks (ANN) in finance is relatively new area of research. We employed ANNs that used both fundamental and technical inputs to predict future prices of widely held Australian stocks and used these predicted prices for stock portfolio selection over a 10-year period (2001-2011). We found that the ANNs generally do well in predicting the direction of stock price movements. The stock portfolios selected by the ANNs with median accuracy are able to generate positive alpha over the 10-year period. More importantly, we found that a portfolio based on randomly selected network configuration had zero chance of resulting in a significantly negative alpha but a 27% chance of yielding a significantly positive alpha. This is in stark contrast to the findings of the research on mutual fund performance where active fund managers with negative alphas outnumber those with positive alphas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to develop a model to estimate future freeway pavement construction costs in Henan Province, China. A comprehensive set of factors contributing to the cost of freeway pavement construction were included in the model formulation. These factors comprehensively reflect the characteristics of region and topography and altitude variation, the cost of labour, material, and equipment, and time-related variables such as index numbers of labour prices, material prices and equipment prices. An Artificial Neural Network model using the Back-Propagation learning algorithm was developed to estimate the cost of freeway pavement construction. A total of 88 valid freeway cases were obtained from freeway construction projects let by the Henan Transportation Department during the period 1994−2007. Data from a random selection of 81 freeway cases were used to train the Neural Network model and the remaining data were used to test the performance of the Neural Network model. The tested model was used to predict freeway pavement construction costs in 2010 based on predictions of input values. In addition, this paper provides a suggested correction for the prediction of the value for the future freeway pavement construction costs. Since the change in future freeway pavement construction cost is affected by many factors, the predictions obtained by the proposed method, and therefore the model, will need to be tested once actual data are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self-renewal and differentiation, and it has recently been suggested that mechanical and solid-state cues, such as extracellular matrix (ECM) stiffness, can also regulate the functions of NSCs and other stem cell types. However, relatively little is known of the molecular mechanisms through which stem cells transduce mechanical inputs into fate decisions, the extent to which mechanical inputs instruct fate decisions versus select for or against lineage-committed blast populations, or the in vivo relevance of mechanotransductive signaling molecules in native stem cell niches. Here we demonstrate that ECM-derived mechanical signals act through Rho GTPases to activate the cellular contractility machinery in a key early window during differentiation to regulate NSC lineage commitment. Furthermore, culturing NSCs on increasingly stiff ECMs enhances RhoA and Cdc42 activation, increases NSC stiffness, and suppresses neurogenesis. Likewise, inhibiting RhoA and Cdc42 or downstream regulators of cellular contractility rescues NSCs from stiff matrix- and Rho GTPase-induced neurosuppression. Importantly, Rho GTPase expression and ECM stiffness do not alter proliferation or apoptosis rates indicating that an instructive rather than selective mechanism modulates lineage distributions. Finally, in the adult brain, RhoA activation in hippocampal progenitors suppresses neurogenesis, analogous to its effect in vitro. These results establish Rho GTPase-based mechanotransduction and cellular stiffness as biophysical regulators of NSC fate in vitro and RhoA as an important regulatory protein in the hippocampal stem cell niche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the use of connectionism (neural networks) in modelling legal reasoning. I discuss how the implementations of neural networks have failed to account for legal theoretical perspectives on adjudication. I criticise the use of neural networks in law, not because connectionism is inherently unsuitable in law, but rather because it has been done so poorly to date. The paper reviews a number of legal theories which provide a grounding for the use of neural networks in law. It then examines some implementations undertaken in law and criticises their legal theoretical naïvete. It then presents a lessons from the implementations which researchers must bear in mind if they wish to build neural networks which are justified by legal theories.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to inhibit unwanted actions is a heritable executive function that may confer risk to disorders such as attention deficit hyperactivity disorder (ADHD). Converging evidence from pharmacology and cognitive neuroscience suggests that response inhibition is instantiated within frontostriatal circuits of the brain with patterns of activity that are modulated by the catecholamines dopamine and noradrenaline. A total of 405 healthy adult participants performed the stop-signal task, a paradigmatic measure of response inhibition that yields an index of the latency of inhibition, termed the stop-signal reaction time (SSRT). Using this phenotype, we tested for genetic association, performing high-density single-nucleotide polymorphism mapping across the full range of autosomal catecholamine genes. Fifty participants also underwent functional magnetic resonance imaging to establish the impact of associated alleles on brain and behaviour. Allelic variation in polymorphisms of the dopamine transporter gene (SLC6A3: rs37020; rs460000) predicted individual differences in SSRT, after corrections for multiple comparisons. Furthermore, activity in frontal regions (anterior frontal, superior frontal and superior medial gyri) and caudate varied additively with the T-allele of rs37020. The influence of genetic variation in SLC6A3 on the development of frontostriatal inhibition networks may represent a key risk mechanism for disorders of behavioural inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotionally arousing events can distort our sense of time. We used mixed block/event-related fMRI design to establish the neural basis for this effect. Nineteen participants were asked to judge whether angry, happy and neutral facial expressions that varied in duration (from 400 to 1,600 ms) were closer in duration to either a short or long duration they learnt previously. Time was overestimated for both angry and happy expressions compared to neutral expressions. For faces presented for 700 ms, facial emotion modulated activity in regions of the timing network Wiener et al. (NeuroImage 49(2):1728–1740, 2010) namely the right supplementary motor area (SMA) and the junction of the right inferior frontal gyrus and anterior insula (IFG/AI). Reaction times were slowest when faces were displayed for 700 ms indicating increased decision making difficulty. Taken together with existing electrophysiological evidence Ng et al. (Neuroscience, doi: 10.3389/fnint.2011.00077, 2011), the effects are consistent with the idea that facial emotion moderates temporal decision making and that the right SMA and right IFG/AI are key neural structures responsible for this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current research was designed to establish whether individual differences in timing performance predict neural activation in the areas that subserve the perception of short durations ranging between 400 and 1600 milliseconds. Seventeen participants completed both a temporal bisection task and a control task, in a mixed fMRI design. In keeping with previous research, there was increased activation in a network of regions typically active during time perception including the right supplementary motor area (SMA) and right pre-SMA and basal ganglia (including the putamen and right pallidum). Furthermore, correlations between neural activity in the right inferior frontal gyrus and SMA and timing performance corroborate the results of a recent meta-analysis and are further evidence that the SMA forms part of a neural clock that is responsible for the accumulation of temporal information. Specifically, subjective lengthening of the perceived duration were associated with increased activation in both the right SMA (and right pre-SMA) and right inferior frontal gyrus.