278 resultados para Mutation testing
Resumo:
With the identification of common single locus point mutations as risk factors for thrombophilia, many DNA testing methodologies have been described for detecting these variations. Traditionally, functional or immunological testing methods have been used to investigate quantitative anticoagulant deficiencies. However, with the emergence of the genetic variations, factor V Leiden, prothrombin 20210 and, to a lesser extent, the methylene tetrahydrofolate reductase (MTHFR677) and factor V HR2 haplotype, traditional testing methodologies have proved to be less useful and instead DNA technology is more commonly employed in diagnostics. This review considers many of the DNA techniques that have proved to be useful in the detection of common genetic variants that predispose to thrombophilia. Techniques involving gel analysis are used to detect the presence or absence of restriction sites, electrophoretic mobility shifts, as in single strand conformation polymorphism or denaturing gradient gel electrophoresis, and product formation in allele-specific amplification. Such techniques may be sensitive, but are unwielding and often need to be validated objectively. In order to overcome some of the limitations of gel analysis, especially when dealing with larger sample numbers, many alternative detection formats, such as closed tube systems, microplates and microarrays (minisequencing, real-time polymerase chain reaction, and oligonucleotide ligation assays) have been developed. In addition, many of the emerging technologies take advantage of colourimetric or fluorescence detection (including energy transfer) that allows qualitative and quantitative interpretation of results. With the large variety of DNA technologies available, the choice of methodology will depend on several factors including cost and the need for speed, simplicity and robustness. © 2000 Lippincott Williams & Wilkins.
Resumo:
The topic of fault detection and diagnostics (FDD) is studied from the perspective of proactive testing. Unlike most research focus in the diagnosis area in which system outputs are analyzed for diagnosis purposes, in this paper the focus is on the other side of the problem: manipulating system inputs for better diagnosis reasoning. In other words, the question of how diagnostic mechanisms can direct system inputs for better diagnosis analysis is addressed here. It is shown how the problem can be formulated as decision making problem coupled with a Bayesian Network based diagnostic mechanism. The developed mechanism is applied to the problem of supervised testing in HVAC systems.
Resumo:
Germline mutations within the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and one of its targets, the cyclin dependent kinase 4 (CDK4) gene, have been identified in a proportion of melanoma kindreds. In the case of CDK4, only one specific mutation, resulting in the substitution of a cysteine for an arginine at codon 24 (R24C), has been found to be associated with melanoma. We have previously reported the identification of germline CDKN2A mutations in 7/18 Australian melanoma kindreds and the absence of the R24C CDK4 mutation in 21 families lacking evidence of a CDKN2A mutation. The current study represents an expansion of these efforts and includes a total of 48 melanoma families from Australia. All of these families have now been screened for mutations within CDKN2A and CDK4, as well as for mutations within the CDKN2A homolog and 9p21 neighbor, the CDKN2B gene, and the alternative exon 1 (E1beta) of CDKN2A. Families lacking CDKN2A mutations, but positive for a polymorphism(s) within this gene, were further evaluated to determine if their disease was associated with transcriptional silencing of one CDKN2A allele. Overall, CDKN2A mutations were detected in 3/30 (10%) of the new kindreds. Two of these mutations have been observed previously: a 24 bp duplication at the 5' end of the gene and a G to C transversion in exon 2 resulting in an M531 substitution. A novel G to A transition in exon 2, resulting in a D108N substitution was also detected. Combined with our previous findings, we have now detected germline CDKN2A mutations in 10/48 (21%) of our melanoma kindreds. In none of the 'CDKN2A-negative' families was melanoma found to segregate with either an untranscribed CDKN2A allele, an R24C CDK4 mutation, a CDKN2B mutation, or an E1beta mutation. The last three observations suggest that these other cell cycle control genes (or alternative gene products) are either not involved at all, or to any great extent, in melanoma predisposition.
Resumo:
The CDKN2A gene encodes p16 (CDKN2A), a cell-cycle inhibitor protein which prevents inappropriate cell cycling and, hence, proliferation. Germ-line mutations in CDKN2A predispose to the familial atypical multiple-mole melanoma (FAMMM) syndrome but also have been seen in rare families in which only 1 or 2 individuals are affected by cutaneous malignant melanoma (CMM). We therefore sequenced exons 1alpha and 2 of CDKN2A using lymphocyte DNA isolated from index cases from 67 families with cancers at multiple sites, where the patterns of cancer did not resemble those attributable to known genes such as hMLH1, hMLH2, BRCA1, BRCA2, TP53 or other cancer susceptibility genes. We found one mutation, a mis-sense mutation resulting in a methionine to isoleucine change at codon 53 (M531) of exon 2. The individual tested had developed 2 CMMs but had no dysplastic nevi and lacked a family history of dysplastic nevi or CMM. Other family members had been diagnosed with oral cancer (2 persons), bladder cancer (1 person) and possibly gall-bladder cancer. While this mutation has been reported in Australian and North American melanoma kindreds, we did not observe it in 618 chromosomes from Scottish and Canadian controls. Functional studies revealed that the CDKN2A variant carrying the M531 change was unable to bind effectively to CDK4, showing that this mutation is of pathological significance. Our results have confirmed that CDKN2A mutations are not limited to FAMMM kindreds but also demonstrate that multi-site cancer families without melanoma are very unlikely to contain CDKN2A mutations.
Resumo:
Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or "indeterminate" 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition.
Resumo:
We have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase (MAPK) activation (either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector major infrastructure market, especially in very large economic infrastructure procured using Pubic Private Partnerships, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI) into the Australian construction market. This paper aims to report on progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major infrastructure projects and which is designed to give an improved understanding of matters surrounding FDI into the Australian construction sector. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors and as head contractors bidding for Australian major infrastructure public sector projects. Elsewhere, the authors have developed Dunning’s principal hypothesis associated with his eclectic framework in order to suit the context of this research and to address a weakness arising in Dunning’s principal hypothesis that is based on a nominal approach to the factors in the eclectic framework and which fail to speak to the relative explanatory power of these factors. In this paper, an approach to reviewing and analysing secondary data, as part of the first stage investigation in this research, is developed and some illustrations given, vis-à-vis the selected sector (roads, bridges and tunnels) in Australia (as the host location) and using one of the selected home countries (Spain). In conclusion, some tentative thoughts are offered in anticipation of the completion of the first stage investigation - in terms of the extent to which this first stage based on secondary data only might suggest the relative importance of the factors in the eclectic framework. It is noted that more robust conclusions are expected following the future planned stages of the research and these stages including primary data are briefly outlined. Finally, and beyond theoretical contributions expected from the overall approach taken to developing and testing Dunning’s framework, other expected contributions concerning research method and practical implications are mentioned.