110 resultados para Monte-Carlo simulation, Rod-coil block copolymer, Tetrapod polymer mixture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To examine the association between neighborhood disadvantage and physical activity (PA). ---------- METHODS: We use data from the HABITAT multilevel longitudinal study of PA among mid-aged (40-65 years) men and women (n=11, 037, 68.5% response rate) living in 200 neighborhoods in Brisbane, Australia. PA was measured using three questions from the Active Australia Survey (general walking, moderate, and vigorous activity), one indicator of total activity, and two questions about walking and cycling for transport. The PA measures were operationalized using multiple categories based on time and estimated energy expenditure that were interpretable with reference to the latest PA recommendations. The association between neighborhood disadvantage and PA was examined using multilevel multinomial logistic regression and Markov Chain Monte Carlo simulation. The contribution of neighborhood disadvantage to between-neighborhood variation in PA was assessed using the 80% interval odds ratio. ---------- RESULTS: After adjustment for sex, age, living arrangement, education, occupation, and household income, reported participation in all measures and levels of PA varied significantly across Brisbane’s neighborhoods, and neighborhood disadvantage accounted for some of this variation. Residents of advantaged neighborhoods reported significantly higher levels of total activity, general walking, moderate, and vigorous activity; however, they were less likely to walk for transport. There was no statistically significant association between neighborhood disadvantage and cycling for transport. In terms of total PA, residents of advantaged neighborhoods were more likely to exceed PA recommendations. ---------- CONCLUSIONS: Neighborhoods may exert a contextual effect on residents’ likelihood of participating in PA. The greater propensity of residents in advantaged neighborhoods to do high levels of total PA may contribute to lower rates of cardiovascular disease and obesity in these areas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant biosecurity requires statistical tools to interpret field surveillance data in order to manage pest incursions that threaten crop production and trade. Ultimately, management decisions need to be based on the probability that an area is infested or free of a pest. Current informal approaches to delimiting pest extent rely upon expert ecological interpretation of presence / absence data over space and time. Hierarchical Bayesian models provide a cohesive statistical framework that can formally integrate the available information on both pest ecology and data. The overarching method involves constructing an observation model for the surveillance data, conditional on the hidden extent of the pest and uncertain detection sensitivity. The extent of the pest is then modelled as a dynamic invasion process that includes uncertainty in ecological parameters. Modelling approaches to assimilate this information are explored through case studies on spiralling whitefly, Aleurodicus dispersus and red banded mango caterpillar, Deanolis sublimbalis. Markov chain Monte Carlo simulation is used to estimate the probable extent of pests, given the observation and process model conditioned by surveillance data. Statistical methods, based on time-to-event models, are developed to apply hierarchical Bayesian models to early detection programs and to demonstrate area freedom from pests. The value of early detection surveillance programs is demonstrated through an application to interpret surveillance data for exotic plant pests with uncertain spread rates. The model suggests that typical early detection programs provide a moderate reduction in the probability of an area being infested but a dramatic reduction in the expected area of incursions at a given time. Estimates of spiralling whitefly extent are examined at local, district and state-wide scales. The local model estimates the rate of natural spread and the influence of host architecture, host suitability and inspector efficiency. These parameter estimates can support the development of robust surveillance programs. Hierarchical Bayesian models for the human-mediated spread of spiralling whitefly are developed for the colonisation of discrete cells connected by a modified gravity model. By estimating dispersal parameters, the model can be used to predict the extent of the pest over time. An extended model predicts the climate restricted distribution of the pest in Queensland. These novel human-mediated movement models are well suited to demonstrating area freedom at coarse spatio-temporal scales. At finer scales, and in the presence of ecological complexity, exploratory models are developed to investigate the capacity for surveillance information to estimate the extent of red banded mango caterpillar. It is apparent that excessive uncertainty about observation and ecological parameters can impose limits on inference at the scales required for effective management of response programs. The thesis contributes novel statistical approaches to estimating the extent of pests and develops applications to assist decision-making across a range of plant biosecurity surveillance activities. Hierarchical Bayesian modelling is demonstrated as both a useful analytical tool for estimating pest extent and a natural investigative paradigm for developing and focussing biosecurity programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the impediments to large-scale use of wind generation within power system is its variable and uncertain real-time availability. Due to the low marginal cost of wind power, its output will change the merit order of power markets and influence the Locational Marginal Price (LMP). For the large scale of wind power, LMP calculation can't ignore the essential variable and uncertain nature of wind power. This paper proposes an algorithm to estimate LMP. The estimation result of conventional Monte Carlo simulation is taken as benchmark to examine accuracy. Case study is conducted on a simplified SE Australian power system, and the simulation results show the feasibility of proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To explore the role of the neighborhood environment in supporting walking Design: Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting: The Brisbane City Local Government Area, Australia, 2007. Subjects: Brisbane residents aged 40 to 65 years. Measures Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis: The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results: After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion: The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some uncertainties such as the stochastic input/output power of a plug-in electric vehicle due to its stochastic charging and discharging schedule, that of a wind unit and that of a photovoltaic generation source, volatile fuel prices and future uncertain load growth, all together could lead to some risks in determining the optimal siting and sizing of distributed generators (DGs) in distributed systems. Given this background, under the chance constrained programming (CCP) framework, a new method is presented to handle these uncertainties in the optimal sitting and sizing problem of DGs. First, a mathematical model of CCP is developed with the minimization of DGs investment cost, operational cost and maintenance cost as well as the network loss cost as the objective, security limitations as constraints, the sitting and sizing of DGs as optimization variables. Then, a Monte Carolo simulation embedded genetic algorithm approach is developed to solve the developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the developed model and method. This work is supported by an Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project on Intelligent Grids Under the Energy Transformed Flagship, and Project from Jiangxi Power Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab μMLC attachment for square field sizes down to 6 mm × 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap. A hypothetical 0.2 mm air gap caused a dose reduction > 2 %, emphasizing the fact that even the tiniest air gaps can cause a large reduction in measured dose. The negligible effect on an 18 mm field size illustrated that the electronic disequilibrium caused by such small air gaps only affects the dosimetry of the very small fields. When performing small field dosimetry, care must be taken to avoid any air gaps, as can be often present when inserting detectors into solid phantoms. It is recommended that very small field dosimetry is performed in liquid water. When using small photon fields, sub-millimetre air gaps can also affect patient dosimetry if they cannot be spatially resolved on a CT scan. However the effect on the patient is debatable as the dose reduction caused by a 1 mm air gap, starting out at 19% in the first 0.1 mm behind the air gap, decreases to < 5 % after just 2 mm, and electronic equilibrium is fully re-established after just 5 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper present an efficient method using system state sampling technique in Monte Carlo simulation for reliability evaluation of multi-area power systems, at Hierarchical Level One (HLI). System state sampling is one of the common methods used in Monte Carlo simulation. The cpu time and memory requirement can be a problem, using this method. Combination of analytical and Monte Carlo method known as Hybrid method, as presented in this paper, can enhance the efficiency of the solution. Incorporation of load model in this study can be utilised either by sampling or enumeration. Both cases are examined in this paper, by application of the methods on Roy Billinton Test System(RBTS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction and aims: Individual smokers from disadvantaged backgrounds are less likely to quit, which contributes to widening inequalities in smoking. Residents of disadvantaged neighbourhoods are more likely to smoke, and neighbourhood inequalities in smoking may also be widening because of neighbourhood differences in rates of cessation. This study examined the association between neighbourhood disadvantage and smoking cessation and its relationship with neighbourhood inequalities in smoking. Design and methods: A multilevel longitudinal study of mid-aged (40-67 years) residents (n=6915) of Brisbane, Australia, who lived in the same neighbourhoods (n=200) in 2007 and 2009. Neighbourhood inequalities in cessation and smoking were analysed using multilevel logistic regression and Markov chain Monte Carlo simulation. Results: After adjustment for individual-level socioeconomic factors, the probability of quitting smoking between 2007 and 2009 was lower for residents of disadvantaged neighbourhoods (9.0%-12.8%) than their counterparts in more advantaged neighbourhoods (20.7%-22.5%). These inequalities in cessation manifested in widening inequalities in smoking: in 2007 the between-neighbourhood variance in rates of smoking was 0.242 (p≤0.001) and in 2009 it was 0.260 (p≤0.001). In 2007, residents of the most disadvantaged neighbourhoods were 88% (OR 1.88, 95% CrI 1.41-2.49) more likely to smoke than residents in the least disadvantaged neighbourhoods: the corresponding difference in 2009 was 98% (OR 1.98 95% CrI 1.48-2.66). Conclusion: Fundamentally, social and economic inequalities at the neighbourhood and individual-levels cause smoking and cessation inequalities. Reducing these inequalities will require comprehensive, well-funded, and targeted tobacco control efforts and equity based policies that address the social and economic determinants of smoking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major priority for cancer control agencies is to reduce geographical inequalities in cancer outcomes. While the poorer breast cancer survival among socioeconomically disadvantaged women is well established, few studies have looked at the independent contribution that area- and individual-level factors make to breast cancer survival. Here we examine relationships between geographic remoteness, area-level socioeconomic disadvantage and breast cancer survival after adjustment for patients’ socio- demographic characteristics and stage at diagnosis. Multilevel logistic regression and Markov chain Monte Carlo simulation were used to analyze 18 568 breast cancer cases extracted from the Queensland Cancer Registry for women aged 30 to 70 years diagnosed between 1997 and 2006 from 478 Statistical Local Areas in Queensland, Australia. Independent of individual-level factors, area-level disadvantage was associated with breast-cancer survival (p=0.032). Compared to women in the least disadvantaged quintile (Quintile 5), women diagnosed while resident in one of the remaining four quintiles had significantly worse survival (OR 1.23, 1.27, 1.30, 1.37 for Quintiles 4, 3, 2 and 1 respectively).) Geographic remoteness was not related to lower survival after multivariable adjustment. There was no evidence that the impact of area-level disadvantage varied by geographic remoteness. At the individual level, Indigenous status, blue collar occupations and advanced disease were important predictors of poorer survival. A woman’s survival after a diagnosis of breast cancer depends on the socio-economic characteristics of the area where she lives, independently of her individual-level characteristics. It is crucial that the underlying reasons for these inequalities be identified to appropriately target policies, resources and effective intervention strategies.