440 resultados para Molecular spectra.
Resumo:
Acute lower respiratory tract infections (ALRTIs) are a common cause of morbidity and mortality among children under 5 years of age and are found worldwide, with pneumonia as the most severe manifestation. Although the incidence of severe disease varies both between individuals and countries, there is still no clear understanding of what causes this variation. Studies of community-acquired pneumonia (CAP) have traditionally not focused on viral causes of disease due to a paucity of diagnostic tools. However, with the emergence of molecular techniques, it is now known that viruses outnumber bacteria as the etiological agents of childhood CAP, especially in children under 2 years of age. The main objective of this study was to investigate viruses contributing to disease severity in cases of childhood ALRTI, using a two year cohort study following 2014 infants and children enrolled in Bandung, Indonesia. A total of 352 nasopharyngeal washes collected from 256 paediatric ALRTI patients were used for analysis. A subset of samples was screened using a novel microarray pathogen detection method that identified respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and human rhinovirus (HRV) in the samples. Real-time RT-PCR was used both for confirming and quantifying viruses found in the nasopharyngeal samples. Viral copy numbers were determined and normalised to the numbers of human cells collected with the use of 18S rRNA. Molecular epidemiology was performed for RSV A and hMPV using sequences to the glycoprotein gene and nucleoprotein gene respectively, to determine genotypes circulating in this Indonesian paediatric cohort. This study found that HRV (119/352; 33.8%) was the most common virus detected as the cause of respiratory tract infections in this cohort, followed by the viral pathogens RSV A (73/352; 20.7%), hMPV (30/352; 8.5%) and RSV B (12/352; 3.4%). Co-infections of more than two viruses were detected in 31 episodes (defined as an infection which occurred more than two weeks apart), accounting for 8.8% of the 352 samples tested or 15.4% of the 201 episodes with at least one virus detected. RSV A genotypes circulating in this population were predominantly GA2, GA5 and GA7, while hMPV genotypes circulating were mainly A2a (27/30; 90.0%), B2 (2/30; 6.7%) and A1 (1/30; 3.3%). This study found no evidence of disease severity associated either with a specific virus or viral strain, or with viral load. However, this study did find a significant association with co-infection of RSV A and HRV with severe disease (P = 0.006), suggesting that this may be a novel cause of severe disease.
Resumo:
Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant mineral of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm-1 between kaolinite and halloysite. It can not be obviously differentiated the kaolinite and halloysite, let alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, give us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in the all range of their spectra, and it also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis.
Resumo:
Raman spectra of bottinoite Ni[Sb(OH)6].6H2O were studied, and related to the molecular structure of the mineral. An intense sharp Raman band at 618 cm-1 is attributed to the SbO symmetric stretching mode. The low intensity band at 735 cm-1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity Raman bands were found at 501, 516 and 578 cm-1. Four Raman bands observed at 1045, 1080, 1111 and 1163 cm-1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3223, 3228, 3368, 3291, 3458 and 3510 cm-1. The first two Raman bands are assigned to water stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm-1 and two infrared bands at 3434 and 3565 cm-1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands are connected with O-H…O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared).
Resumo:
The structure and thermal stability between typical China kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300 to 700 °C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm-1, attributed to structure water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed for both kaolinite and halloysite. In the 550 °C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm-1 region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. This difference is attributed to the fundamental difference in the structure of the two minerals.
Resumo:
The SER spectra of riboflavin and FAD are identical and are resonance enhanced at 514 or 532 nm. Signals from FAD/ riboflavin dominated SER spectra whenever these compounds were present with proteins or bacteria. SER spectra of very different bacteria such as Pseudomonas. aeruginosa, Bacillu. subtilis and Geobacillus. stearothermophilus were dominated by signals from FAD, even when these bacteria were added to a preformed colloid. The SERS signal of FAD is greatly reduced at 785 nm, and SER spectra of bacteria excited at 785 nm are quite different than those collected at 514 or 532 nm. This supports the assignment of the peaks in the 514 nm SER spectra of bacteria to FAD rather to amino acids or N-acetylglucosamine. The SER spectra of certain mixes of adenine and FAD showed similar changes to those of bacteria when the excitation was changed from 514/532 nm to 785 nm. The ratio of colloid: bacteria was of critical important for obtaining good SER spectra, and the addition of sodium sulfate was also beneficial. Removal of EPS from bacteria before analysis facilitated interaction with the silver surface, and may be a useful step to include in identification protocols.
Resumo:
Banana leaf streak disease, caused by several species of Banana streak virus (BSV), is widespread in East Africa. We surveyed for this disease in Uganda and Kenya, and used rolling-circle amplification (RCA) to detect the presence of BSV in banana. Six distinct badnavirus sequences, three from Uganda and three from Kenya, were amplified for which only partial sequences were previously available. The complete genomes were sequenced and characterised. The size and organisation of all six sequences was characteristic of other badnaviruses, including conserved functional domains present in the putative polyprotein encoded by open reading frame (ORF) 3. Based on nucleotide sequence analysis within the reverse transcriptase/ribonuclease H-coding region of open reading frame 3, we propose that these sequences be recognised as six new species and be designated as Banana streak UA virus, Banana streak UI virus, Banana streak UL virus, Banana streak UM virus, Banana streak CA virus and Banana streak IM virus. Using PCR and species-specific primers to test for the presence of integrated sequences, we demonstrated that sequences with high similarity to BSIMV only were present in several banana cultivars which had tested negative for episomal BSV sequences.
Resumo:
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
The mineral dussertite, a hydroxy-arsenate mineral of formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman complimented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved quite similar, although some minor differences were observed. In the Raman spectra of Czech dussertite, four bands are observed in the 800 to 950 cm-1 region. The bands are assigned as follows: the band at 902 cm-1 is assigned to the (AsO4)3- ν3 antisymmetric stretching mode, at 870 cm-1 to the (AsO4)3- ν1 symmetric stretching mode, and both at 859 cm-1 and 825 cm-1 to the As-OM2+/3+ stretching modes/and or hydroxyls bending modes. Raman bands at 372 and 409 cm-1 are attributed to the ν2 (AsO4)3- bending mode and the two bands at 429 and 474 cm-1 are assigned to the ν4 (AsO4)3- bending mode. An intense band at 3446 cm-1 in the infrared spectrum and a complex set of bands centred upon 3453 cm-1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen bonded (OH)- units and/or water units in the mineral structure. The broad infrared band at 3223 cm-1 is assigned to the vibrations of hydrogen bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3- and (AsO3OH)2- units.