126 resultados para Modal decomposition
Resumo:
Boron–nitrogen containing compounds with high hydrogen contents as represented by ammonia borane (NH3BH3) have recently attracted intense interest for potential hydrogen storage applications. One such compound is [(NH3)2BH2]B3H8 with a capacity of 18.2 wt% H. Two safe and efficient synthetic routes to [(NH3)2BH2]B3H8 have been developed for the first time since it was discovered 50 years ago. The new synthetic routes avoid a dangerous starting chemical, tetraborane (B4H10), and afford a high yield. Single crystal X-ray diffraction analysis reveals N–Hδ+Hδ−–B dihydrogen interactions in the [(NH3)2BH2]B3H8·18-crown-6 adduct. Extended strong dihydrogen bonds were observed in pure [(NH3)2BH2]B3H8 through crystal structure solution based upon powder X-ray analysis. Pyrolysis of [(NH3)2BH2]B3H8 leads to the formation of hydrogen gas together with appreciable amounts of volatile boranes below 160 °C.
Resumo:
The thermal decomposition of hydronium jarosite and ammoniojarosite was studied using thermogravimetric analysis and mass spectrometry, in situ synchrotron X-ray diffraction and infrared emission spectroscopy. There was no evidence for the simultaneous loss of water and sulfur dioxide during the desulfonation stage as has previously been reported for hydronium jarosite. Conversely, all hydrogen atoms are lost during the dehydration and dehydroxylation stage from 270 to 400 °C and no water, hydroxyl groups or hydronium ions persist after 400 °C. The same can be said for ammoniojarosite. The first mass loss step during the decomposition of hydronium jarosite has been assigned to the loss of the hydronium ion via protonation of the surrounding hydroxyl groups to evolve two water molecules. For ammoniojarosite, this step corresponds to the protonation of a hydroxyl group by ammonium, so that ammonia and water are liberated simultaneously. Iron(II) sulfate was identified as a possible intermediate during the decomposition of ammoniojarosite (421–521 °C) due to a redox reaction between iron(III) and the liberated ammonia during decomposition. Iron(II) ions were also confirmed with the 1,10-phenanthroline test. Iron(III) sulfate and other commonly suggested intermediates for hydronium and ammoniojarosite decomposition are not major crystalline phases; if they are formed, then they most likely exist as an amorphous phase or a different low temperature phases than usual.
Resumo:
Plug-in electric vehicles (PEVs) are increasingly popular in the global trend of energy saving and environmental protection. However, the uncoordinated charging of numerous PEVs can produce significant negative impacts on the secure and economic operation of the power system concerned. In this context, a hierarchical decomposition approach is presented to coordinate the charging/discharging behaviors of PEVs. The major objective of the upper-level model is to minimize the total cost of system operation by jointly dispatching generators and electric vehicle aggregators (EVAs). On the other hand, the lower-level model aims at strictly following the dispatching instructions from the upper-level decision-maker by designing appropriate charging/discharging strategies for each individual PEV in a specified dispatching period. Two highly efficient commercial solvers, namely AMPL/IPOPT and AMPL/CPLEX, respectively, are used to solve the developed hierarchical decomposition model. Finally, a modified IEEE 118-bus testing system including 6 EVAs is employed to demonstrate the performance of the developed model and method.
Resumo:
The paper utilises the Juhn Murphy and Pierce (1991) decomposition to shed light on the pattern of slow male-female wage convergance in Australia over the 1980s. The analysis allows one to distinguish between the role of wage structure and genderspecific effects. The central question addressed is whether rising wage inequality counteracted the forces of increased female investment in labour market skills, i.e. education and experience. The conclusion is that in contrast to the US and the UK, Australian women do not appear to have been swimming against a tide of adverse wage structure changes.
Resumo:
Damage detection using modal properties is a widely accepted method. However, quantifying such damage using modal properties is still not well established. With this in mind, a research project is presently underway towards the development of a procedure to detect, locate and quantify damage in structural components using the variations in modal properties. A novel vibration based parameter called Vibration based Damage Index is introduced into the damage assessment procedure. This paper presents the early part of the research project which treats flexural members. The proposed procedure is validated using experimental data and/or theoretical techniques and illustrated through application. Outcomes of this research highlight the ability of the proposed procedure to successfully detect, locate and quantify damage in flexural structural components using the modal properties of the first few modes.
Resumo:
Objective To describe the trend of overall mortality and major causes of death in Shandong population from 1970 to 2005,and to quantitatively estimate the influential factors. Methods Trends of overall mortality and major causes of death were described using indicators such as mortality rates and age-adjusted death rates by comparing three large-scale mortality surveys in Shandong province. Difference decomposing method was applied to estimate the contribution of demographic and non-demographic factors for the change of mortality. Results The total mortality had had a slight change since 1970s,but had increased since 1990s.However,both the mortality rates of age-adjusted and age-specific decreased significantly. The mortality of Group Ⅰ diseases including infectious diseases as well maternal and perinatal diseases decreased drastically. By contrast, the mortality of non-communicable chronic diseases (NCDs)including cardiovascular diseases(CVDs),cancer and injuries increased. The sustentation of recent overall mortality was caused by the interaction of demographic and non-demographic factors which worked oppositely. Non-demographic factors were responsible for the decrease of Group Ⅰ disease and the increase of injuries. With respect to the increase of NCDs as a whole. Demographic factors might take the full responsibility and the non-demographic factors were the opposite force to reduce the mortality. Nevertheless, for the increase of some leading NCD diseases as CVDs and cancer, the increase was mainly due to non-demographic rather than demographic factors. Conclusion Through the interaction of the aggravation of ageing population and the enhancement of non-demographic effect, the overall mortality in Shandong would maintain a balance or slightly rise in the coming years. Group Ⅰ diseases in Shandong had been effectively under control. Strategies focusing on disease control and prevention should be transferred to chronic diseases, especially leading NCDs, such as CVDs and cancer.
Resumo:
Taguchi method is for the first time applied to optimize the synthesis of graphene films by copper-catalyzed decomposition of ethanol. In order to find the most appropriate experimental conditions for the realization of thin high-grade films, six experiments suitably designed and performed. The influence of temperature (1000–1070 °C) and synthesis duration (1–30 min) and hydrogen flow (0–100 sccm) on the number of graphene layers and defect density in the graphitic lattice was ranked by monitoring the intensity of the 2D- and D-bands relative to the G-band in the Raman spectra. After critical examination and adjusting of the conditions predicted to give optimal results, a continuous film consisting of 2–4 nearly defect-free graphene layers was obtained.
Resumo:
A series of NR composites filled with modified kaolinite (MK), carbon black (CB) and the hybrid fillercontained MK and CB, were prepared by melt blending. The microstructure, combustion and thermaldecomposition behaviors of NR composites were characterized by TEM, XRD, infrared spectroscopy, conecalorimeter test (CCT) and thermal-gravimetric analysis (TG). The results show that the filler hybridizationcan improve the dispensability and shape of the kaolinite sheets in the rubber matrix and change theinterface bond between kaolinite particles and rubber molecules. NR-3 filled by 10 phr MK and 40 phr CBhas the lowest heat release rate (HRR), mass loss rate (MLR), total heat release (THR), smoke productionrate (SPR) and the highest char residue among all the NR composites. Therefore, the hybridization ofthe carbon black particles with the kaolinite particles can effectively improve the thermal stability andcombustion properties of NR composites.
Resumo:
Diagnostics is based on the characterization of mechanical system condition and allows early detection of a possible fault. Signal processing is an approach widely used in diagnostics, since it allows directly characterizing the state of the system. Several types of advanced signal processing techniques have been proposed in the last decades and added to more conventional ones. Seldom, these techniques are able to consider non-stationary operations. Diagnostics of roller bearings is not an exception of this framework. In this paper, a new vibration signal processing tool, able to perform roller bearing diagnostics in whatever working condition and noise level, is developed on the basis of two data-adaptive techniques as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED), coupled by means of the mathematics related to the Hilbert transform. The effectiveness of the new signal processing tool is proven by means of experimental data measured in a test-rig that employs high power industrial size components.
Resumo:
Suspension bridges meet the steadily growing demand for lighter and longer bridges in today’s infrastructure systems. These bridges are designed to have long life spans, but with age, their main cables and hangers could suffer from corrosion and fatigue. There is a need for a simple and reliable procedure to detect and locate such damage, so that appropriate retrofitting can be carried out to prevent bridge failure. Damage in a structure causes changes in its properties (mass, damping and stiffness) which in turn will cause changes in its vibration characteristics (natural frequencies, modal damping and mode shapes). Methods based on modal flexibility, which depends on both the natural frequencies and mode shapes, have the potential for damage detection. They have been applied successfully to beam and plate elements, trusses and simple structures in reinforced concrete and steel. However very limited applications for damage detection in suspension bridges have been identified to date. This paper examines the potential of modal flexibility methods for damage detection and localization of a suspension bridge under different damage scenarios in the main cables and hangers using numerical simulation techniques. Validated finite element model (FEM) of a suspension bridge is used to acquire mass normalized mode shape vectors and natural frequencies at intact and damaged states. Damage scenarios will be simulated in the validated FE models by varying stiffness of the damaged structural members. The capability of damage index based on modal flexibility to detect and locate damage is evaluated. Results confirm that modal flexibility based methods have the ability to successfully identify damage in suspension bridge main cables and hangers.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research examining effects of uncertainties of generic WSN platform and verifying the capability of SHM-oriented WSNs, particularly on demanding SHM applications like modal analysis and damage identification of real civil structures. This article first reviews the major technical uncertainties of both generic and SHM-oriented WSN platforms and efforts of SHM research community to cope with them. Then, effects of the most inherent WSN uncertainty on the first level of a common Output-only Modal-based Damage Identification (OMDI) approach are intensively investigated. Experimental accelerations collected by a wired sensory system on a benchmark civil structure are initially used as clean data before being contaminated with different levels of data pollutants to simulate practical uncertainties in both WSN platforms. Statistical analyses are comprehensively employed in order to uncover the distribution pattern of the uncertainty influence on the OMDI approach. The result of this research shows that uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the impact and obtain truly structural information without having used costly computation solutions.
Resumo:
Chinese modal particles feature prominently in Chinese people’s daily use of the language, but their pragmatic and semantic functions are elusive as commonly recognised by Chinese linguists and teachers of Chinese as a foreign language. This book originates from an extensive and intensive empirical study of the Chinese modal particle a (啊), one of the most frequently used modal particles in Mandarin Chinese. In order to capture all the uses and the underlying meanings of the particle, the author transcribed the first 20 episodes, about 20 hours in length, of the popular Chinese TV drama series Kewang ‘Expectations’, which yielded a corpus data of more than 142’000 Chinese characters with a total of 1829 instances of the particle all used in meaningful communicative situations. Within its context of use, every single occurrence of the particle was analysed in terms of its pragmatic and semantic contributions to the hosting utterance. Upon this basis the core meanings were identified which were seen as constituting the modal nature of the particle.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.
Resumo:
Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.
Resumo:
Real world business process models may consist of hundreds of elements and have sophisticated structure. Although there are tasks where such models are valuable and appreciated, in general complexity has a negative influence on model comprehension and analysis. Thus, means for managing the complexity of process models are needed. One approach is abstraction of business process models-creation of a process model which preserves the main features of the initial elaborate process model, but leaves out insignificant details. In this paper we study the structural aspects of process model abstraction and introduce an abstraction approach based on process structure trees (PST). The developed approach assures that the abstracted process model preserves the ordering constraints of the initial model. It surpasses pattern-based process model abstraction approaches, allowing to handle graph-structured process models of arbitrary structure. We also provide an evaluation of the proposed approach.