120 resultados para Metric Antiprojection
Resumo:
Robust descriptor matching across varying lighting conditions is important for vision-based robotics. We present a novel strategy for quantifying the lighting variance of descriptors. The strategy works by utilising recovered low dimensional mappings from Isomap and our measure of the lighting variance of each of these mappings. The resultant metric allows different descriptors to be compared given a dataset and a set of keypoints. We demonstrate that the SIFT descriptor typically has lower lighting variance than other descriptors, although the result depends on semantic class and lighting conditions.
Resumo:
Textual document set has become an important and rapidly growing information source in the web. Text classification is one of the crucial technologies for information organisation and management. Text classification has become more and more important and attracted wide attention of researchers from different research fields. In this paper, many feature selection methods, the implement algorithms and applications of text classification are introduced firstly. However, because there are much noise in the knowledge extracted by current data-mining techniques for text classification, it leads to much uncertainty in the process of text classification which is produced from both the knowledge extraction and knowledge usage, therefore, more innovative techniques and methods are needed to improve the performance of text classification. It has been a critical step with great challenge to further improve the process of knowledge extraction and effectively utilization of the extracted knowledge. Rough Set decision making approach is proposed to use Rough Set decision techniques to more precisely classify the textual documents which are difficult to separate by the classic text classification methods. The purpose of this paper is to give an overview of existing text classification technologies, to demonstrate the Rough Set concepts and the decision making approach based on Rough Set theory for building more reliable and effective text classification framework with higher precision, to set up an innovative evaluation metric named CEI which is very effective for the performance assessment of the similar research, and to propose a promising research direction for addressing the challenging problems in text classification, text mining and other relative fields.
Resumo:
This work aims to contribute to the reliability and integrity of perceptual systems of unmanned ground vehicles (UGV). A method is proposed to evaluate the quality of sensor data prior to its use in a perception system by utilising a quality metric applied to heterogeneous sensor data such as visual and infrared camera images. The concept is illustrated specifically with sensor data that is evaluated prior to the use of the data in a standard SIFT feature extraction and matching technique. The method is then evaluated using various experimental data sets that were collected from a UGV in challenging environmental conditions, represented by the presence of airborne dust and smoke. In the first series of experiments, a motionless vehicle is observing a ’reference’ scene, then the method is extended to the case of a moving vehicle by compensating for its motion. This paper shows that it is possible to anticipate degradation of a perception algorithm by evaluating the input data prior to any actual execution of the algorithm.
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke. An example of application is given with monocular SLAM estimating the pose of the UGV while smoke is present in the environment. It is shown that the proposed novel quality metric can be used to anticipate situations where the quality of the pose estimate will be significantly degraded due to the input image data. This leads to decisions of advantageously switching between data sources (e.g. using infrared images instead of visual images).
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke.
Resumo:
This paper proposes an approach to obtain a localisation that is robust to smoke by exploiting multiple sensing modalities: visual and infrared (IR) cameras. This localisation is based on a state-of-the-art visual SLAM algorithm. First, we show that a reasonably accurate localisation can be obtained in the presence of smoke by using only an IR camera, a sensor that is hardly affected by smoke, contrary to a visual camera (operating in the visible spectrum). Second, we demonstrate that improved results can be obtained by combining the information from the two sensor modalities (visual and IR cameras). Third, we show that by detecting the impact of smoke on the visual images using a data quality metric, we can anticipate and mitigate the degradation in performance of the localisation by discarding the most affected data. The experimental validation presents multiple trajectories estimated by the various methods considered, all thoroughly compared to an accurate dGPS/INS reference.
Resumo:
Purpose The goal of this work was to set out a methodology for measuring and reporting small field relative output and to assess the application of published correction factors across a population of linear accelerators. Methods and materials Measurements were made at 6 MV on five Varian iX accelerators using two PTW T60017 unshielded diodes. Relative output readings and profile measurements were made for nominal square field sizes of side 0.5 to 1.0 cm. The actual in-plane (A) and cross-plane (B) field widths were taken to be the FWHM at the 50% isodose level. An effective field size, defined as FSeff=A·B, was calculated and is presented as a field size metric. FSeffFSeff was used to linearly interpolate between published Monte Carlo (MC) calculated kQclin,Qmsrfclin,fmsr values to correct for the diode over-response in small fields. Results The relative output data reported as a function of the nominal field size were different across the accelerator population by up to nearly 10%. However, using the effective field size for reporting showed that the actual output ratios were consistent across the accelerator population to within the experimental uncertainty of ±1.0%. Correcting the measured relative output using kQclin,Qmsrfclin,fmsr at both the nominal and effective field sizes produce output factors that were not identical but differ by much less than the reported experimental and/or MC statistical uncertainties. Conclusions In general, the proposed methodology removes much of the ambiguity in reporting and interpreting small field dosimetric quantities and facilitates a clear dosimetric comparison across a population of linacs
Resumo:
Significant attention has been given in urban policy literature to the integration of land-use and transport planning and policies—with a view to curbing sprawling urban form and diminishing externalities associated with car-dependent travel patterns. By taking land-use and transport interaction into account, this debate mainly focuses on how a successful integration can contribute to societal well-being, providing efficient and balanced economic growth while accomplishing the goal of developing sustainable urban environments and communities. The integration is also a focal theme of contemporary urban development models, such as smart growth, liveable neighbourhoods, and new urbanism. Even though available planning policy options for ameliorating urban form and transport-related externalities have matured—owing to growing research and practice worldwide—there remains a lack of suitable evaluation models to reflect on the current status of urban form and travel problems or on the success of implemented integration policies. In this study we explore the applicability of indicator-based spatial indexing to assess land-use and transport integration at the neighbourhood level. For this, a spatial index is developed by a number of indicators compiled from international studies and trialled in Gold Coast, Queensland, Australia. The results of this modelling study reveal that it is possible to propose an effective metric to determine the success level of city plans considering their sustainability performance via composite indicator methodology. The model proved useful in demarcating areas where planning intervention is applicable, and in identifying the most suitable locations for future urban development and plan amendments. Lastly, we integrate variance-based sensitivity analysis with the spatial indexing method, and discuss the applicability of the model in other urban contexts.
Resumo:
Disjoint top-view networked cameras are among the most commonly utilized networks in many applications. One of the open questions for these cameras' study is the computation of extrinsic parameters (positions and orientations), named extrinsic calibration or localization of cameras. Current approaches either rely on strict assumptions of the object motion for accurate results or fail to provide results of high accuracy without the requirement of the object motion. To address these shortcomings, we present a location-constrained maximum a posteriori (LMAP) approach by applying known locations in the surveillance area, some of which would be passed by the object opportunistically. The LMAP approach formulates the problem as a joint inference of the extrinsic parameters and object trajectory based on the cameras' observations and the known locations. In addition, a new task-oriented evaluation metric, named MABR (the Maximum value of All image points' Back-projected localization errors' L2 norms Relative to the area of field of view), is presented to assess the quality of the calibration results in an indoor object tracking context. Finally, results herein demonstrate the superior performance of the proposed method over the state-of-the-art algorithm based on the presented MABR and classical evaluation metric in simulations and real experiments.
Resumo:
Bandwidths and offsets are important components in vehicle traffic control strategies. This article proposes new methods for quantifying and selecting them. Bandwidth is the amount of green time available for vehicles to travel through adjacent intersections without the requirement to stop at the second traffic light. The offset is the difference between the starting-time of ``green'' periods at two adjacent intersections, along a given route. The core ideas in this article were developed during the 2013 Maths and Industry Study Group in Brisbane, Australia. Analytical expressions for computing bandwidth, as a function of offset, are developed. An optimisation model, for selecting offsets across an arterial, is proposed. Arterial roads were focussed upon, as bandwidth and offset have a greater impact on these types of road as opposed to a full traffic network. A generic optimisation-simulation approach is also proposed to refine an initial starting solution, according to a specified metric. A metric that reflects the number of stops, and the distance between stops, is proposed to explicitly reduce the dissatisfaction of road users, and to implicitly reduce fuel consumption and emissions. Conceptually the optimisation-simulation approach is superior as it handles real-life complexities and is a global optimisation approach. The models and equations in this article can be used in road planning and traffic control.
Resumo:
The planning of IMRT treatments requires a compromise between dose conformity (complexity) and deliverability. This study investigates established and novel treatment complexity metrics for 122 IMRT beams from prostate treatment plans. The Treatment and Dose Assessor software was used to extract the necessary data from exported treatment plan files and calculate the metrics. For most of the metrics, there was strong overlap between the calculated values for plans that passed and failed their quality assurance (QA) tests. However, statistically significant variation between plans that passed and failed QA measurements was found for the established modulation index and for a novel metric describing the proportion of small apertures in each beam. The ‘small aperture score’ provided threshold values which successfully distinguished deliverable treatment plans from plans that did not pass QA, with a low false negative rate.
Resumo:
A bioeconomic model was developed to evaluate the potential performance of brown tiger prawn stock enhancement in Exmouth Gulf, Australia. This paper presents the framework for the bioeconomic model and risk assessment for all components of a stock enhancement operation, i.e. hatchery, grow-out, releasing, population dynamics, fishery, and monitoring, for a commercial scale enhancement of about 100 metric tonnes, a 25% increase in average annual catch in Exmouth Gulf. The model incorporates uncertainty in estimates of parameters by using a distribution for the parameter over a certain range, based on experiments, published data, or similar studies. Monte Carlo simulation was then used to quantify the effects of these uncertainties on the model-output and on the economic potential of a particular production target. The model incorporates density-dependent effects in the nursery grounds of brown tiger prawns. The results predict that a release of 21 million 1 g prawns would produce an estimated enhanced prawn catch of about 100 t. This scale of enhancement has a 66.5% chance of making a profit. The largest contributor to the overall uncertainty of the enhanced prawn catch was the post-release mortality, followed by the density-dependent mortality caused by released prawns. These two mortality rates are most difficult to estimate in practice and are much under-researched in stock enhancement.
Resumo:
Protocols for bioassessment often relate changes in summary metrics that describe aspects of biotic assemblage structure and function to environmental stress. Biotic assessment using multimetric indices now forms the basis for setting regulatory standards for stream quality and a range of other goals related to water resource management in the USA and elsewhere. Biotic metrics are typically interpreted with reference to the expected natural state to evaluate whether a site is degraded. It is critical that natural variation in biotic metrics along environmental gradients is adequately accounted for, in order to quantify human disturbance-induced change. A common approach used in the IBI is to examine scatter plots of variation in a given metric along a single stream size surrogate and a fit a line (drawn by eye) to form the upper bound, and hence define the maximum likely value of a given metric in a site of a given environmental characteristic (termed the 'maximum species richness line' - MSRL). In this paper we examine whether the use of a single environmental descriptor and the MSRL is appropriate for defining the reference condition for a biotic metric (fish species richness) and for detecting human disturbance gradients in rivers of south-eastern Queensland, Australia. We compare the accuracy and precision of the MSRL approach based on single environmental predictors, with three regression-based prediction methods (Simple Linear Regression, Generalised Linear Modelling and Regression Tree modelling) that use (either singly or in combination) a set of landscape and local scale environmental variables as predictors of species richness. We compared the frequency of classification errors from each method against set biocriteria and contrast the ability of each method to accurately reflect human disturbance gradients at a large set of test sites. The results of this study suggest that the MSRL based upon variation in a single environmental descriptor could not accurately predict species richness at minimally disturbed sites when compared with SLR's based on equivalent environmental variables. Regression-based modelling incorporating multiple environmental variables as predictors more accurately explained natural variation in species richness than did simple models using single environmental predictors. Prediction error arising from the MSRL was substantially higher than for the regression methods and led to an increased frequency of Type I errors (incorrectly classing a site as disturbed). We suggest that problems with the MSRL arise from the inherent scoring procedure used and that it is limited to predicting variation in the dependent variable along a single environmental gradient.
Resumo:
1. Biodiversity, water quality and ecosystem processes in streams are known to be influenced by the terrestrial landscape over a range of spatial and temporal scales. Lumped attributes (i.e. per cent land use) are often used to characterise the condition of the catchment; however, they are not spatially explicit and do not account for the disproportionate influence of land located near the stream or connected by overland flow. 2. We compared seven landscape representation metrics to determine whether accounting for the spatial proximity and hydrological effects of land use can be used to account for additional variability in indicators of stream ecosystem health. The landscape metrics included the following: a lumped metric, four inverse-distance-weighted (IDW) metrics based on distance to the stream or survey site and two modified IDW metrics that also accounted for the level of hydrologic activity (HA-IDW). Ecosystem health data were obtained from the Ecological Health Monitoring Programme in Southeast Queensland, Australia and included measures of fish, invertebrates, physicochemistry and nutrients collected during two seasons over 4 years. Linear models were fitted to the stream indicators and landscape metrics, by season, and compared using an information-theoretic approach. 3. Although no single metric was most suitable for modelling all stream indicators, lumped metrics rarely performed as well as other metric types. Metrics based on proximity to the stream (IDW and HA-IDW) were more suitable for modelling fish indicators, while the HA-IDW metric based on proximity to the survey site generally outperformed others for invertebrates, irrespective of season. There was consistent support for metrics based on proximity to the survey site (IDW or HA-IDW) for all physicochemical indicators during the dry season, while a HA-IDW metric based on proximity to the stream was suitable for five of the six physicochemical indicators in the post-wet season. Only one nutrient indicator was tested and results showed that catchment area had a significant effect on the relationship between land use metrics and algal stable isotope ratios in both seasons. 4. Spatially explicit methods of landscape representation can clearly improve the predictive ability of many empirical models currently used to study the relationship between landscape, habitat and stream condition. A comparison of different metrics may provide clues about causal pathways and mechanistic processes behind correlative relationships and could be used to target restoration efforts strategically.
Resumo:
Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment.