98 resultados para Mechanical and tribological properties
Resumo:
Graphene, one of the allotropes (diamond, carbon nanotube, and fullerene) of element carbon, is a monolayer of honeycomb lattice of carbon atoms, which was discovered in 2004. The Nobel Prize in Physics 2010 was awarded to Andre Geim and Konstantin Novoselov for their ground breaking work on the two-dimensional (2D) graphene [1]. Since its discovery, the research communities have shown a lot of interest in this novel material owing to its intriguing electrical, mechanical and thermal properties. It has been confirmed that grapheme possesses very peculiar electrical properties such as anomalous quantum hall effect, and high electron mobility at room temperature (250000 cm2/Vs). Graphene also has exceptional mechanical properties. It is one of the stiffest (modulus ~1 TPa) and strongest (strength ~100 GPa) materials. In addition, it has exceptional thermal conductivity (5000 Wm-1K-1). Due to these exceptional properties, graphene has demonstrated its potential for broad applications in micro and nano devices, various sensors, electrodes, solar cells and energy storage devices and nanocomposites. In particular, the excellent mechanical properties of graphene make it more attractive for development next generation nanocomposites and hybrid materials...
Resumo:
With a monolayer honeycomb-lattice of sp2-hybridized carbon atoms, graphene has demonstrated exceptional electrical, mechanical and thermal properties. One of its promising applications is to create graphene-polymer nanocomposites with tailored mechanical and physical properties. In general, the mechanical properties of graphene nanofiller as well as graphene-polymer interface govern the overall mechanical performance of graphene-polymer nanocomposites. However, the strengthening and toughening mechanisms in these novel nanocomposites have not been well understood. In this work, the deformation and failure of graphene sheet and graphene-polymer interface were investigated using molecular dynamics (MD) simulations. The effect of structural defects on the mechanical properties of graphene and graphene-polymer interface was investigated as well. The results showed that structural defects in graphene (e.g. Stone-Wales defect and multi-vacancy defect) can significantly deteriorate the fracture strength of graphene but may still make full utilization of corresponding strength of graphene and keep the interfacial strength and the overall mechanical performance of graphene-polymer nanocomposites.
Resumo:
Depression is a serious condition that impacts the academic success and emotional well-being of the university students globally. Keeping in view the debilitating nature of this condition, the present study examined the stability of the factor structure and psychometric properties of the University Student Depression Inventory (USDI; Khawaja and Bryden, 2006). There is a need to translate and validate the scale for Persian speaking students, who live in Iran, its neighboring countries and in many other Western countries. The scale was translated into the Persian language and was used as part of a battery consisting of the scales measuring suicide, depression, stress, happiness and academic achievement. The battery was administered to 359 undergraduate students, and an additional 150 students who had been referred to the mental health center of the University of Tehran as clinical sample. Confirmatory factor analysis upheld the original three-factor structure. The results exhibited internal consistency, test-retest reliability, convergent, and divergent validity, and discriminant validity. There were gender differences and male had higher mean scores on Lethargy, Cognitive\emotion, and Academic motivation subscales than female students. Findings supported the Persian version of the USDI for cross-cultural use as a valid and reliable measure in the diagnosis of depression.
Resumo:
We have previously isolated a series of MCF-7 human breast cancer cell variants which no longer require estrogen-supplementation for tumor growth in nude mice (Clarke et al. Proc Natl Acad Sci USA 86: 3649-3653, 1989). We now report that these hormone-independent and hormone-responsive variants (MIII, MCF7/LCC1) can invade locally from solid mammary fat pad tumors, and produce primary extensions on the surface of intraperitoneal structures including liver, pancreas, and diaphragm. Both lymphatic and hematogenous dissemination are observed, resulting in the establishing of pulmonary, bone, and renal metastases. The pattern of metastasis by MIII and MCF7/LCC1 cells closely resembles that frequently observed in breast cancer patients, and provides the first evidence of metastasis from MCF-7 cells growing in vivo without supplementary estrogen. The interexperimental incidence of metastases, and the time from cell inoculation to the appearance of metastatic disease are variable. The increased metastatic potential is not associated with an increase in either the level of laminin attachment, laminin receptor mRNA expression, or secreted type IV collagenolytic activity. We also did not detect a significant decrease in the steady-state mRNA levels of the metastasis inhibitor nm23 gene. However, when growing without estrogen in vitro, MCF7/LCC1 cells produce elevated levels of the estrogen-inducible cathepsin D enzyme.
Resumo:
In vitro invasion and in vivo metastasis assays were performed with a panel of MCF-7 cells transfected with isogenic constructs of mutated ras(H) genes. Both increased levels of ras(H) expression and ras(H) oncogene activation increased activity of derivative cell lines in in vitro invasion assays. In vivo formation of spontaneous metastases was assessed after intradermal inoculation of MCF-7 cells in the vicinity of the mammary fat pads of ovariectomized nude mice. No metastases were seen in the absence of estradiol treatment of the mice. With estradiol supplementation of the mice both the ras(H)-transfected and control transfected cell lines gave a higher incidence of metastases than parental MCF-7 cells. Prolonged treatment of mice with exogenous estradiol (60 days vs. 21 days) resulted in more frequent metastases to liver and lung at the end of the 90-day observation period. In contrast to activated ras(H)-gene enhancement of metastatic capacity of rodent fibroblast and epithelial cell lines, there was no correlation of ras(H) expression with in vivo metastatic capacity of a human mammary carcinoma cell line.
Resumo:
The effect of a change of tillage and crop residue management practice on the chemical and micro-biological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop direct-drilled; SI: stubble incorporated with a single cultivation, crop conventionally sown), for a 3-year period on plots previously managed with each of the same three practices for 14 years. A change from DD to CC or SI practice resulted in a significant decline, in the top 0-5 cm of soil, in organic C, total N, electrical conductivity, NH4-N, NO3-N, soil moisture holding capacity, microbial biomass and CO2 respiration as well as a decline in the microbial quotient (the ratio of microbial biomass C to organic C; P <0.05). In contrast, a change from SI to DD or CC practice or a change from CC to DD or SI practice had only negligible impact on soil chemical properties (P >0.05). However, there was a significant increase in microbial biomass and the microbial quotient in the top 0-5 cm of soil following the change from CC to DD or SI practice and with the change from SI to DD practice (P <0.05). Analysis of ester-linked fatty acid methyl esters (EL-FAMEs) extracted from the 0- to 5-cm and 5- to 10-cm layers of the soils of the various treatments detected changes in the FAME profiles following a change in tillage practice. A change from DD practice to SI or CC practice was associated with a significant decline in the ratio of fungal to bacterial fatty acids in the 0- to 5-cm soil (P <0.05). The results show that a change in tillage practice, particularly the cultivation of a previously minimum-tilled (direct-drilled) soil, will result in significant changes in soil chemical and microbiological properties within a 3-year period. They also show that soil microbiological properties are sensitive indicators of a change in tillage practice.
Resumo:
The effect of nitrogen on the growth of vertically oriented graphene nanosheets on catalyst-free silicon and glass substrates in a plasma-assisted process is studied. Different concentrations of nitrogen were found to act as versatile control knobs that could be used to tailor the length, number density and structural properties of the nanosheets. Nanosheets with different structural characteristics exhibit markedly different optical properties. The nanosheet samples were treated with a bovine serum albumin protein solution to investigate the effects of this variation on the optical properties for biosensing through confocal micro-Raman spectroscopy and UV-Vis spectrophotometry. © 2012 Optical Society of America.
Resumo:
The possibility of effective control of morphology and electrical properties of self-organized graphene structures on plasma-exposed Si surfaces is demonstrated. The structures are vertically standing nanosheets and can be grown without any catalyst and any external heating upon direct contact with high-density inductively coupled plasmas at surface temperatures not exceeding 673–723 K. Study of nucleation and growth dynamics revealed the possibility to switch-over between the two most common (turnstile- and maze-like) morphologies on the same substrates by a simple change of the plasma parameters. This change leads to the continuous or discontinuous native oxide layer that supports self-organized patterns of small carbon nanoparticles on which the structures nucleate. It is shown that by tailoring the nanoparticle arrangement one can create various three-dimensional architectures and networks of graphene nanosheet structures. We also demonstrate effective control of the degree of graphitization of the graphene nanosheet structures from the initial through the final growth stages. This makes it possible to tune the electrical resistivity properties of the produced three-dimensional patterns/networks from strongly dielectric to semiconducting. Our results contribute to enabling direct integration of graphene structures into presently dominant Si-based nanofabrication platform for next-generation nanoelectronic, sensor, biomedical, and optoelectronic components and nanodevices.
Resumo:
Al-doped zinc oxide (AZO) thin films are deposited onto glass substrates using radio-frequency reactive magnetron sputtering and the improvements in their physical properties by post-synthesis thermal treatment are reported. X-ray diffraction spectra show that the structure of films can be controlled by adjusting the annealing temperatures, with the best crystallinity obtained at 400°C under a nitrogen atmosphere. These films exhibit improved quality and better optical transmittance as indicated by the UV-Vis spectra. Furthermore, the sheet resistivity is found to decrease from 1.87 × 10-3 to 5.63 × 10-4Ω⋅cm and the carrier mobility increases from 6.47 to 13.43 cm2 ⋅ V-1 ⋅ s-1 at the optimal annealing temperature. Our results demonstrate a simple yet effective way in controlling the structural, optical and electrical properties of AZO thin films, which is important for solar cell applications.
Resumo:
Structural stability, electronic, and optical properties of InN under high pressure are studied using the first-principles calculations. The lattice constants and electronic band structure are found consistent with the available experimental and theoretical values. The pressure of the wurtzite-to-rocksalt structural transition is 13.4 GPa, which is in an excellent agreement with the most recent experimental values. The optical characteristics reproduce the experimental data thus justifying the feasibility of our theoretical predictions of the optical properties of InN at high pressures.
Resumo:
This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.
Resumo:
Al-C-N-O composite thin films have been synthesized by radio frequency reactive diode sputtering of an aluminum target in plasmas of N2+O2+CH4 gas mixtures. The chemical structure and composition of the films have been investigated by means of infrared and X-ray photoelectron spectroscopy. The results reveal the formation of C-N, Al-C, Al-N and Al-O bonds. The X-ray diffraction pattern suggests that the films are of nanometer composite material and contain predominately crystalline grains of hexagonal AlN and α-Al2O3. A good thermal stability of the composite has been confirmed by the annealing treatment at temperatures up to 600 °C.
Resumo:
Magnetic behavior of soils can seriously hamper the performance of geophysical sensors. Currently, we have little understanding of the types of minerals responsible for the magnetic behavior, as well as their distribution in space and evolution through time. This study investigated the magnetic characteristics and mineralogy of Fe-rich soils developed on basaltic substrate in Hawaii. We measured the spatial distribution of magnetic susceptibility (χlf) and frequency dependence (χfd%) across three test areas in a well-developed eroded soil on Kaho'olawe and in two young soils on the Big Island of Hawaii. X-ray diffraction spectroscopy, x-ray fluorescence spectroscopy (XFCF), chemical dissolution, thermal analysis, and temperature-dependent magnetic studies were used to characterize soil development and mineralogy for samples from soil pits on Kaho'olawe, surface samples from all three test areas, and unweathered basalt from the Big Island of Hawaii. The measurements show a general increase in magnetic properties with increasing soil development. The XRF Fe data ranged from 13% for fresh basalt and young soils on the Big Island to 58% for material from the B horizon of Kaho'olawe soils. Dithionite-extractable and oxalate-extractable Fe percentages increase with soil development and correlate with χlf-and χfd%, respectively. Results from the temperature-dependent susceptibility measurements show that the high soil magnetic properties observed in geophysical surveys in Kaho'olawe are entirely due to neoformed minerals. The results of our studies have implications for the existing soil survey of Kaho'olawe and help identify methods to characterize magnetic minerals in tropical soils.
Resumo:
The properties and toxicity of untreatedwastewater at Davis Station, East Antarctica,were investigated to inform decisions regarding the appropriate level of treatment for local discharge purposes and more generally, to better understand the risk associated with dispersal and impact of wastewaters in Antarctica. Suspended solids, nutrients (nitrogen, phosphorus), biological oxygen demand (BOD), metals, organic contaminants, surfactants and microbiological load were measured at various locations throughout the wastewater discharge system. Wastewater quality and properties varied greatly between buildings on station, each ofwhich has separate holding tanks. Nutrients, BOD and settleable solid levelswere higher than standard municipal wastewaters. Microbiological loads were typical of untreated wastewater. Contaminants detected in the wastewater included metals and persistent organic compounds, mainly polybrominated diphenyl ethers (PBDEs). The toxicity of wastewater was also investigated in laboratory bioassays using two local Antarctic marine invertebrates, the amphipod Paramoera walkeri and the microgastropod Skenella paludionoides. Animals were exposed to a range of wastewater concentrations from3% to 68% (test 1) or 63% (test 2) over 21 days with survival monitored daily. Significant mortality occurred in all concentrations of wastewater after 14 to 21 days, and at higher concentrations (50–68% wastewater) mortality occurred after only one day. Results indicate that the local receiving marine environment at Davis Station is at risk from existing wastewater discharges, and that advanced treatment is required both to remove contaminants shown to cause toxicity to biota, as well as to reduce the environmental risks associated with non-native micro-organisms in wastewater.
Resumo:
Background Concordance is characterised as a negotiation-like health communication approach based on an equal and collaborative partnership between patients and health professionals. The Leeds Attitudes to Concordance II (LATCon II) scale was developed to measure the attitudes towards concordance. The purpose of this study was to translate the LATCon II into Chinese and psychometrically test the Chinese version of LATCon II (C-LATCon II). Methods The study involved three phases: i) translation and cross-cultural adaptation; ii) pilot study, and; iii) a cross-sectional survey (n = 366). Systematic random sampling was used to recruit hypertensive patients from nine communities covering around 78,000 residents in China. Tests of psychometric properties included content validity, construct validity, criteria-related validity (correlation between the C-LATCon II and the Therapeutic Adherence Scale for Hypertensive Patients (TASHP)), internal reliability, and test-retest reliability (n = 30). Results The study found that the C-LATCon II had a satisfactory content validity (item-level Content Validity Index (CVI) = 0.83-1, scale-level CVI/universal agreement = 0.89, and scale-level CVI/averaging calculation = 0.98), construct validity (four components extracted explained 56.66% of the total variance), internal reliability (Cronbach’s alpha of overall scale and four components was 0.78 and 0.66-0.84, respectively), and test-retest reliability (Pearson’s correlation coefficient = 0.82, p < 0.001; interclass correlation coefficient = 0.82, p < 0.001; linear weighted kappa3 statistic for each item = 0.40-0.65, p < 0.05). Criteria-related validity showed a weak association (Pearson’s correlation coefficient = 0.11, p < 0.05) between patients’ attitudes towards concordance during health communication and their health behaviours for hypertension management. Conclusions The C-LATCon II is a validated and reliable instrument which can be used to evaluate the attitudes to concordance in Chinese populations. Four components (health professionals’ attitudes, partnership between two parties, therapeutic decision making, and patients’ involvement) describe the attitudes towards concordance during health communication.