135 resultados para Macro features
Resumo:
In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.
Resumo:
The assembly of retroviruses is driven by oligomerization of the Gag polyprotein. We have used cryo-electron tomography together with subtomogram averaging to describe the three-dimensional structure of in vitro-assembled Gag particles from human immunodeficiency virus, Mason-Pfizer monkey virus, and Rous sarcoma virus. These represent three different retroviral genera: the lentiviruses, betaretroviruses and alpharetroviruses. Comparison of the three structures reveals the features of the supramolecular organization of Gag that are conserved between genera and therefore reflect general principles of Gag-Gag interactions and the features that are specific to certain genera. All three Gag proteins assemble to form approximately spherical hexameric lattices with irregular defects. In all three genera, the N-terminal domain of CA is arranged in hexameric rings around large holes. Where the rings meet, 2-fold densities, assigned to the C-terminal domain of CA, extend between adjacent rings, and link together at the 6-fold symmetry axis with a density, which extends toward the center of the particle into the nucleic acid layer. Although this general arrangement is conserved, differences can be seen throughout the CA and spacer peptide regions. These differences can be related to sequence differences among the genera. We conclude that the arrangement of the structural domains of CA is well conserved across genera, whereas the relationship between CA, the spacer peptide region, and the nucleic acid is more specific to each genus.
Resumo:
The Lockyer Valley is situated 80 km west of Brisbane and is bounded on the sou th and west by the Great Dividing Range. The valley is a major western sub - catchment of the larger Brisbane River drainage system and is drained by the Lockyer Creek. The Lockyer catchment forms approximately 20% of the total Brisbane River catchment and has an area of around 2900 km2. The Lockyer Creek is an ephemeral drainage system, and the stream and associated alluvium are the main source for irrigation water supply in the Lockyer Valley. The catchment is comprised of a number of well -defined, elongate tributaries in the south, and others in the north, which are more meandering in nature.
Resumo:
Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.
Resumo:
This thesis reports on an investigation to develop an advanced and comprehensive milling process model of the raw sugar factory. Although the new model can be applied to both, the four-roller and six-roller milling units, it is primarily developed for the six-roller mills which are widely used in the Australian sugar industry. The approach taken was to gain an understanding of the previous milling process simulation model "MILSIM" developed at the University of Queensland nearly four decades ago. Although the MILSIM model was widely adopted in the Australian sugar industry for simulating the milling process it did have some incorrect assumptions. The study aimed to eliminate all the incorrect assumptions of the previous model and develop an advanced model that represents the milling process correctly and tracks the flow of other cane components in the milling process which have not been considered in the previous models. The development of the milling process model was done is three stages. Firstly, an enhanced milling unit extraction model (MILEX) was developed to access the mill performance parameters and predict the extraction performance of the milling process. New definitions for the milling performance parameters were developed and a complete milling train along with the juice screen was modelled. The MILEX model was validated with factory data and the variation in the mill performance parameters was observed and studied. Some case studies were undertaken to study the effect of fibre in juice streams, juice in cush return and imbibition% fibre on extraction performance of the milling process. It was concluded from the study that the empirical relations developed for the mill performance parameters in the MILSIM model were not applicable to the new model. New empirical relations have to be developed before the model is applied with confidence. Secondly, a soluble and insoluble solids model was developed using modelling theory and experimental data to track the flow of sucrose (pol), reducing sugars (glucose and fructose), soluble ash, true fibre and mud solids entering the milling train through the cane supply and their distribution in juice and bagasse streams.. The soluble impurities and mud solids in cane affect the performance of the milling train and further processing of juice and bagasse. New mill performance parameters were developed in the model to track the flow of cane components. The developed model is the first of its kind and provides some additional insight regarding the flow of soluble and insoluble cane components and the factors affecting their distribution in juice and bagasse. The model proved to be a good extension to the MILEX model to study the overall performance of the milling train. Thirdly, the developed models were incorporated in a proprietary software package "SysCAD’ for advanced operational efficiency and for availability in the ‘whole of factory’ model. The MILEX model was developed in SysCAD software to represent a single milling unit. Eventually the entire milling train and the juice screen were developed in SysCAD using series of different controllers and features of the software. The models developed in SysCAD can be run from macro enabled excel file and reports can be generated in excel sheets. The flexibility of the software, ease of use and other advantages are described broadly in the relevant chapter. The MILEX model is developed in static mode and dynamic mode. The application of the dynamic mode of the model is still under progress.
Resumo:
This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.
Resumo:
The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.
Resumo:
This paper investigates the characteristics of ventures which have the potential to reach high growth and compares this with ‘everyday’ new ventures. Findings of interest in this paper include: • HP firms are characterised by higher human capital, are more likely to have a team of founders, are more likely to be product based. • HP firms are more likely to achieve more extreme levels of growth (both positive and negative). • HP ventures that make a loss are more likely to do so early in the venture process. Those that do hold on show that there can higher levels of loss made later on in firm development. HP firms have higher resource needs, in terms of seeking external finance, but are no more likely to receive external finance than regular firms.
Resumo:
Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.
Resumo:
Background: Few patients diagnosed with lung cancer are still alive 5 years after diagnosis. The aim of the current study was to conduct a 10-year review of a consecutive series of patients undergoing curative-intent surgical resection at the largest tertiary referral centre to identify prognostic factors. Methods: Case records of all patients operated on for lung cancer between 1998 and 2008 were reviewed. The clinical features and outcomes of all patients with non-small cell lung cancer (NSCLC) stage I-IV were recorded. Results: A total of 654 patients underwent surgical resection with curative intent during the study period. Median overall survival for the entire cohort was 37 months. The median age at operation was 66 years, with males accounting for 62.7 %. Squamous cell type was the most common histological subtype, and lobectomies were performed in 76.5 % of surgical resections. Pneumonectomy rates decreased significantly in the latter half of the study (25 vs. 16.3 %), while sub-anatomical resection more than doubled (2 vs. 5 %) (p < 0.005). Clinico-pathological characteristics associated with improved survival by univariate analysis include younger age, female sex, smaller tumour size, smoking status, lobectomy, lower T and N status and less advanced pathological stage. Age, gender, smoking status and tumour size, as well as T and N descriptors have emerged as independent prognostic factors by multivariate analysis. Conclusion: We identified several factors that predicted outcome for NSCLC patients undergoing curative-intent surgical resection. Survival rates in our series are comparable to those reported from other thoracic surgery centres. © 2012 Royal Academy of Medicine in Ireland.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
The huge amount of CCTV footage available makes it very burdensome to process these videos manually through human operators. This has made automated processing of video footage through computer vision technologies necessary. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned ‘normal’ model. There is no precise and exact definition for an abnormal activity; it is dependent on the context of the scene. Hence there is a requirement for different feature sets to detect different kinds of abnormal activities. In this work we evaluate the performance of different state of the art features to detect the presence of the abnormal objects in the scene. These include optical flow vectors to detect motion related anomalies, textures of optical flow and image textures to detect the presence of abnormal objects. These extracted features in different combinations are modeled using different state of the art models such as Gaussian mixture model(GMM) and Semi- 2D Hidden Markov model(HMM) to analyse the performances. Further we apply perspective normalization to the extracted features to compensate for perspective distortion due to the distance between the camera and objects of consideration. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.
Resumo:
Severe fever with thrombocytopenia syndrome (SFTS), an emerging vector-borne disease, is caused by a novel bunyavirus belonging to the genus Phlebovirus [1, 2]. SFTS infections can be life-threatening and are characterized by sudden onset of fever, thrombocytopenia, gastrointestinal symptoms, and leukocytopenia. The tick Haemaphysalis longicornis is generally considered to be the vector of SFTS, which is widely distributed in China [2]. Person-to-person transmission through direct contact with contaminated blood has also been reported as a possible means of SFTS transmission [3–5]. Currently, there is no specific treatment other than supportive care [6]...
Resumo:
Many newspapers and magazines have added “social media features” to their web-based information services in order to allow users to participate in the production of content. This study examines the specific impact of the firm’s investment in social media features on their online business models. We make a comparative case study of four Scandinavian print media firms that have added social media features to their online services. We show how social media features lead to online business model innovation, particularly linked to the firms’ value propositions. The paper discusses the repercussions of this transformation on firms’ relationship with consumers and with traditional content contributors. The modified value proposition also requires firms to acquire new competences in order to reap full benefit of their social media investments. We show that the firms have been unable to do so since they have not allowed the social media features to affect their online revenue models.