92 resultados para MULTI-ELEMENT ANALYSES
Resumo:
Cold-formed steel wall frame systems using lipped or unlipped C-sections and gypsum plasterboard lining are commonly utilised in the construction of both the load bearing and non-load bearing walls in the residential, commercial and industrial buildings. However, the structural behaviour of unlined and lined stud wall frames is not well understood and adequate design rules are not available. A detailed research program was therefore undertaken to investigate the behaviour of stud wall frame systems. As the first step in this research, the problem relating to the degree of end fixity of stud was investigated. The studs are usually connected to the top and bottom tracks and the degree of end fixity provided by these tracks is not adequately addressed by the design codes. A finite element model of unlined frames was therefore developed, and validated using full scale experimental results. It was then used in a detailed parametric study to develop appropriate design rules for unlined wall frames. This study has shown that by using appropriate effective length factors, the ultimate load and failure modes of the unlined studs can be accurately predicted using the provisions of Australian or American cold-formed steel structures design codes. This paper presents the details of the finite element analyses, the results and recommended design rules for unlined wall frames.
Resumo:
Hollow flange channel section is a cold-formed high-strength and thin-walled steel section with a unique shape including two rectangular hollow flanges and a slender web. Due to its mono-symmetric characteristics, it will also be subjected to torsion when subjected to transverse loads in practical applications. Past research on steel beams subject to torsion has concentrated on open sections while very few steel design standards give suitable design rules for torsion design. Since the hollow flange channel section is different from conventional open sections, its torsional behaviour remains unknown to researchers. Therefore the elastic behaviour of hollow flange channel sections subject to uniform and non-uniform torsion, and combined torsion and bending was investigated using the solutions of appropriate differential equilibrium equations. The section torsion shear flow, warping normal stress distribution, and section constants including torsion constant and warping constant were obtained. The results were compared with those from finite element analyses that verified the accuracy of analytical solutions. Parametric studies were undertaken for simply supported beams subject to a uniformly distributed torque and a uniformly distributed transverse load applied away from the shear centre. This paper presents the details of this research into the elastic behaviour and strength of hollow flange channel sections subject to torsion and bending and the results.
Resumo:
The LiteSteel beam (LSB) is a cold-formed high strength steel channel section made of two torsionally rigid closed flanges and a slender web. Due to its mono-symmetric characteristics, its centroid and shear centre do not coincide. The LSBs can be used in floor systems as joists or bearers and in these applications they are often subjected to transverse loads that are applied away from the shear centre. Hence they are often subjected to combined bending and torsion actions. Previous researches on LSBs have concentrated on their bending or shear behaviour and strengths, and only limited research has been undertaken on their combined bending and torsion behaviour. Therefore in this research a series of nine experiments was first conducted on LSBs subject to combined bending and torsion. Three LSB sections were tested to failure under eccentric loading at mid-span, and appropriate results were obtained from seven tests. A special test rig was used to simulate two different eccentricities and to provide accurate simple boundary conditions at the supports. Finite element models of tested LSBs were developed using ANSYS, and the ultimate strengths, failure modes, and load–displacement curves were obtained and compared with corresponding test results. Finite element analyses agreed well with test results and hence the developed models were used in a parametric study to investigate the effects of load locations, eccentricities, and spans on the combined bending and torsion behaviour of LSBs. The interaction between the ultimate bending and torsional moment capacities was studied and a simple design rule was proposed. This paper presents the details of the tests, finite element analyses, and parametric study of LSBs subject to combined bending and torsion, and the results.
Resumo:
Tapered tubular steel masts are commonly used to support floodlights in a range of applications. The design of these slender tapered masts requires a rational elastic flexural buckling analysis as the thickness also varies with height. Therefore a series of finite element analyses of tapered masts with varying geometry parameters was conducted to develop an elastic flexural buckling load formula. This paper briefly discusses the design methods, and then presents the details of the finite element analyses and the results. 1–Associate Professor of Civil Engineering, and Director, Physical Infrastructure Centre 2–Former BE (Civil) Student, QUT
Resumo:
Light gauge steel frame (LSF) floor systems are generally made of lipped channel section joists and lined with gypsum plasterboards to provide adequate fire resistance rating under fire conditions. Recently a new LSF floor system made of welded hollow flange channel (HFC) section was developed and its fire performance was investigated using full scale fire tests. The new floor systems gave higher fire resistance ratings in comparison to conventional LSF floor systems. To avoid expensive and time consuming full scale fire tests, finite element analyses were also performed to simulate the fire performance of LSF floors made of HFC joists using both steady and transient state methods. This paper presents the details of the developed finite element models of HFC joists to simulate the structural fire performance of the LSF floor systems under standard fire conditions. Finite element analyses were performed using the measured time–temperature profiles of the failed joists from the fire tests, and their failure times, temperatures and modes, and deflection versus time curves were obtained. The developed finite element models successfully predicted the structural performance of LSF floors made of HFC joists under fire conditions. They were able to simulate the complex behaviour of thin cold-formed steel joists subjected to non-uniform temperature distributions, and local buckling and yielding effects. This study also confirmed the superior fire performance of the newly developed LSF floors made of HFC joists.
Resumo:
The continuous mutual transfer of knowledge and skills within work teams is increasingly important for organizational practice. According to the situational and experience-based approaches of applied learning research, certain individual and social prerequisites have to be met for successful learning in teams. In a field study at an automobile production site, it was investigated which personal characteristics of multipliers and which characteristics of teams are related to the performance of multipliers in 31 teams with 291 coworkers. Using multi-level analyses (HLM), the amount of variance explained by the predictor variables in teaching success of multipliers and learning success of coworkers was examined. Results showed that multipliers' conscientiousness and team cohesion were related to teaching success of multipliers; extraversion and team cohesion were related to the learning success of coworkers. In closing, the scientific and practical implications for the investigation and promotion of work-based learning processes in teams are discussed.
Resumo:
Lipped channel beams (LCBs) are commonly used as flexural members such as floor joists and bearers in the construction 6 industry. These thin-walled LCBs are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable 7 research in this area, some recent studies have shown that the current web crippling design rules are unable to predict the test capacities under 8 end-two-flange (ETF) and interior-two-flange (ITF) load conditions. In many instances, web crippling predictions by the available design 9 standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 are inconsistent, i.e., unconservative in some cases, although they 10 are conservative in other cases. Hence, experimental studies consisting of 36 tests were conducted in this research to assess the web crippling 11 behavior and capacities of high-strength LCBs under two-flange load cases (ETF and ITF). Experimental results were then compared with the 12 predictions from current design rules. Comparison of the ultimate web crippling capacities from tests showed that the design equations are 13 very unconservative for LCB sections under the ETF load case and are conservative for the ITF load case. Hence, improved equations were 14 proposed to determine the web crippling capacities of LCBs based on the experimental results from this study. Current design equations do 15 not provide the direct strength method (DSM) provisions for web crippling. Hence, suitable design rules were also developed under the DSM 16 format using the test results and buckling analyses using finite-element analyses.
Resumo:
This paper presents the details of experimental and numerical studies on the web crippling behaviour of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies consisting of 28 tests were first conducted in this research to assess the web crippling behaviour and strengths of LSBs under two flange load cases (ETF and ITF). Experimental web crippling capacity results were then compared with the predictions from AS/NZS 4600 and AISI S100 design rules, which showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LSBs under ETF and ITF load cases. Hence improved equations were proposed to determine the web crippling capacities of LSBs. Finite element models of the tested LSBs were then developed, and used to determine the elastic buckling loads of LSBs under ETF and ITF load cases. New equations were proposed to determine the corresponding elastic buckling coefficients of LSBs. Finally suitable design rules were also developed under the Direct Strength Method format using the test results and buckling analysis results from finite element analyses.
Resumo:
This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.
Resumo:
This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.
Resumo:
Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.
Resumo:
An array of monopole elements with reduced element spacing of λ/6 to λ/20 is considered for application in digital beam-forming and direction-finding. The small element spacing introduces strong mutual coupling between the array elements. This paper discusses that decoupling can be achieved analytically for arrays with three elements and describes Kuroda’s identities to realize the lumped elements of the derived decoupling network. Design procedures and equations are proposed. Experimental results are presented. The decoupled array has a bandwidth of 1% and a superdirective radiation pattern.
Resumo:
The method on concurrent multi-scale model of structural behavior (CMSM-of-SB) for the purpose of structural health monitoring including model updating and validating has been studied. The detailed process of model updating and validating is discussed in terms of reduced scale specimen of the steel box girder in longitudinal stiffening truss of a long span bridge. Firstly, some influence factors affecting the accuracy of the CMSM-of-SB including the boundary restraint regidity, the geometry and material parameters on the toe of the weld and its neighbor are analyzed using sensitivity method. Then, sensitivity-based model updating technology is adopted to update the developed CMSM-of-SB and model verification is carried out through calculating and comparing stresses on different locations under various loading from dynamic characteristic and static response. It can be concluded that the CMSM-of-SB based on the substructure method is valid.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
Preliminary data is presented on a detailed statistical analysis of k-factor determination for a single class of minerals (amphiboles) which contain a wide range of element concentrations. These amphiboles are homogeneous, contain few (if any) subsolidus microstructures and can be readily prepared for thin film analysis. In previous studies, element loss during the period of irradiation has been assumed negligible for the determination of k-factors. Since this phenomena may be significant for certain mineral systems, we also report on the effect of temperature on k-factor determination for various elements using small probe sizes (approx.20 nm).