117 resultados para MODIFIED POLYCARBONATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozone-induced dissociation (OzID) exploits the gas-phase reaction between mass-selected lipid ions and ozone vapor to determine the position(s) of unsaturation In this contribution, we describe the modification of a tandem linear ion-trap mass spectrometer specifically for OzID analyses wherein ozone vapor is supplied to the collision cell This instrumental configuration provides spatial separation between mass-selection, the ozonolysis reaction, and mass-analysis steps in the OzID process and thus delivers significant enhancements in speed and sensitivity (ca 30-fold) These improvements allow spectra revealing the double-bond position(s) within unsaturated lipids to be acquired within 1 s significantly enhancing the utility of OzID in high-throughput lipidomic protocols The stable ozone concentration afforded by this modified instrument also allows direct comparison of relative reactivity of isomeric lipids and reveals reactivity trends related to (1) double-bond position, (2) substitution position on the glycerol backbone, and (3) stereochemistry For cis- and trans-isomers, differences were also observed in the branching ratio of product ions arising from the gas-phase ozonolysis reaction, suggesting that relative ion abundances could be exploited as markers for double-bond geometry Additional activation energy applied to mass-selected lipid ions during injection into the collision cell (with ozone present) was found to yield spectra containing both OzID and classical-CID fragment ions This combination CID-OzID acquisition on an ostensibly simple monounsaturated phosphatidylcholine within a cow brain lipid extract provided evidence for up to four structurally distinct phospholipids differing in both double-bond position and sn-substitution U Am Soc Mass Spectrom 2010, 21, 1989-1999) (C) 2010 American Society for Mass Spectrometry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives This study explored the criterion-related validity and test-retest reliability of the modified RESIDential Environment physical activity questionnaire and whether the instrument's validity varied by body mass index, education, race/ethnicity, or employment status. Design Validation study using baseline data collected for randomized trial of a weight loss intervention. Methods Participants recruited from health departments wore an ActiGraph accelerometer and self-reported non-occupational walking, moderate and vigorous physical activity on the modified RESIDential Environment questionnaire. We assessed validity (n = 152) using Spearman correlation coefficients, and reliability (n = 57) using intraclass correlation coefficients. Results When compared to steps, moderate physical activity, and bouts of moderate/vigorous physical activity measured by accelerometer, these questionnaire measures showed fair evidence for validity: recreational walking (Spearman correlation coefficients 0.23–0.36), total walking (Spearman correlation coefficients 0.24–0.37), and total moderate physical activity (Spearman correlation coefficients 0.18–0.36). Correlations for self-reported walking and moderate physical activity were higher among unemployed participants and women with lower body mass indices. Generally no other variability in the validity of the instrument was found. Evidence for reliability of RESIDential Environment measures of recreational walking, total walking, and total moderate physical activity was substantial (intraclass correlation coefficients 0.56–0.68). Conclusions Evidence for questionnaire validity and reliability varied by activity domain and was strongest for walking measures. The questionnaire may capture physical activity less accurately among women with higher body mass indices and employed participants. Capturing occupational activity, specifically walking at work, may improve questionnaire validity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of cell-cell adhesion in carcinoma cells may be an important step in the acquisition of an invasive, metastatic phenotype. We have examined the expression of the epithelial-specific cell adhesion molecule uvomorulin (E-cadherin, cell-CAM 120/80, L-CAM) in human breast cancer cell lines. We find that fibroblastoid, highly invasive, vimentin-expressing breast cancer cell lines do not express uvomorulin. Of the more epithelial-appearing, less invasive, keratin-expressing breast cancer cell lines, some express uvomorulin, and some do not. We examined the morphologies of the cell lines in the reconstituted basement membrane matrix Matrigel and measured the ability of the cells to traverse a Matrigel-coated filter as in vitro models for detachment of carcinoma cells from neighboring cells and invasion through basement membrane into surrounding tissue. Colonies of uvomorulin-positive cells have a characteristic fused appearance in Matrigel, whereas uvomorulin-negative cells appear detached. Cells which are uvomorulin negative and vimentin positive have a stellate morphology in Matrigel. We show that uvomorulin is responsible for the fused colony morphology in Matrigel since treatment of uvomorulin-positive MCF-7 cells with an antibody to uvomorulin caused the cells to detach from one another but did not induce invasiveness in these cells, as measured by their ability to cross a Matrigel-coated polycarbonate filter in a modified Boyden chamber assay. Two uvomorulin-negative, vimentin-negative cell lines are also not highly invasive as measured by this assay. We suggest that loss of uvomorulin-mediated cell-cell adhesion may be one of many changes involved in the progression of a carcinoma cell to an invasive phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unfortunately, there is no reliable method to adequately quantify discomfort glare. One of the world's largest investigations on discomfort glare was conducted in five Green Star office buildings in Brisbane. Luminance mapping via high dynamic range images and Post Occupancy Evaluation surveys were used in the data collection. A new glare index, termed the Unified Glare Probability, was developed to predict discomfort glare within these types of office buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aimed at understanding the molecular mechanisms involved in the superior integration of micro-roughened titanium implant surfaces with the surrounding bone, when compared with their smooth surfaces. It involved studying the role of microRNAs and cell signaling pathways in the molecular regulation of bone cells on topographically modified titanium dental implants. The findings suggest a highly regulated microRNA-mediated control of molecular mechanisms during the process of bone formation that may be responsible for the superior osseointegration properties on micro-roughened titanium implant surfaces and indicate the possibility of using microRNA modulators to enhance osseointegration in clinically demanding circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For timely processing of the crop, sugar factories need boiler stations that can reliably produce steam when fired with fuel of variable quality. The control systems installed on most sugar factory boilers have changed little in the last thirty years and in some cases the default control system response to changes in fuel and/or fuel quality is not correct and operator intervention is required to prevent factory stoppages or reductions in crushing rate caused by poor combustion. Some factories have recently modified their boiler control systems for improved combustion performance and reduced maintenance costs. This paper describes testing carried out to evaluate some of these control system modifications and identifies boiler control system changes that can be applied more widely in the sugar industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric energy harvesters can be used to convert ambient energy into electrical energy and power small autonomous devices. In recent years, massive effort has been made to improve the energy harvesting ability in piezoelectric materials. In this study, reduced graphene oxide was added into poly(vinylidene fluoride) to fabricate the piezoelectric nanocomposite films. Open-circuit voltage and electrical power harvesting experiments showed remarkable enhancement in the piezoelectricity of the fabricated poly(vinylidene fluoride)/reduced graphene oxide nanocomposite, especially at an optimal reduced graphene oxide content of 0.05 wt%. Compared to pristine poly(vinylidene fluoride) films, the open-circuit voltage, the density of harvested power of alternating current, and direct current of the poly(vinylidene fluoride)/reduced graphene oxide nanocomposite films increased by 105%, 153%, and 233%, respectively, indicating a great potential for a broad range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.