383 resultados para Load-line.
Resumo:
Insulin-like growth factor binding proteins (IGFBPs) are prime regulators of IGF-action in numerous cell types including the retinal pigment epithelium (RPE). The RPE performs several functions essential for vision, including growth factor secretion and waste removal via a phagocytic process mediated in part by vitronectin (Vn). In the course of studying the effects of IGFBPs on IGF-mediated VEGF secretion and Vn-mediated phagocytosis in the RPE cell line ARPE-19, we have discovered that these cells avidly ingest synthetic microspheres (2.0 μm diameter) coated with IGFBPs. Given the novelty of this finding and the established role for endocytosis in mediating IGFBP actions in other cell types, we have explored the potential role of candidate cell surface receptors. Moreover, we have examined the role of key IGFBP structural motifs, by comparing responses to three members of the IGFBP family (IGFBP-3, IGFBP-4 and IGFBP-5) which display overlapping variations in primary structure and glycosylation status. Coating of microspheres (FluoSpheres®, sulfate modified polystyrene filled with a fluorophore) was conducted at 37 °C for 1 h using 20 μg/mL of test protein, followed by extensive washing. Binding of proteins was confirmed using a microBCA assay. The negative control consisted of microspheres treated with 0.1% bovine serum albumin (BSA), and all test samples were post-treated with BSA in an effort to coat any remaining free protein binding sites, which might otherwise encourage non-specific interactions with the cell surface. Serum-starved cultures of ARPE-19 cells were incubated with microspheres for 24 h, using a ratio of approximately 100 microspheres per cell. Uptake of microspheres was quantified using a fluorometer and was confirmed visually by confocal fluorescence microscopy. The ARPE-19 cells displayed little affinity for BSA-treated microspheres, but avidly ingested large quantities of those pre-treated with Vn (ANOVA; p < 0.001). Strong responses were also observed towards recombinant formulations of non-glycosylated IGFBP-3, glycosylated IGFBP-3 and glycosylated IGFBP-5 (all p < 0.001), while glycosylated IGFBP-4 induced a relatively minor response (p < 0.05). The response to IGFBP-3 was unaffected in the presence of excess soluble IGFBP-3, IGF-I or Vn. Likewise, soluble IGFBP-3 did not induce uptake of BSA-treated microspheres. Antibodies to either the transferrin receptor or type 1 IGF-receptor displayed slight inhibitory effects on responses to IGFBPs and Vn. Heparin abolished responses to Vn, IGFBP-5 and non-glycosylated IGFBP-3, but only partially inhibited the response to glycosylated IGFBP-3. Our results demonstrate for the first time IGFBP-mediated endocytosis in ARPE-19 cells and suggest roles for the IGFBP-heparin-binding domain and glycosylation status. These findings have important implications for understanding the mechanisms of IGFBP actions on the RPE, and in particular suggest a role for IGFBP-endocytosis.
Resumo:
Aims: Dietary glycemic index (GI) and glycemic load (GL) have been associated with risk of chronic diseases, yet limited research exists on patterns of consumption in Australia. Our aims were to investigate glycemic carbohydrate in a population of older women, identify major contributing food sources, and determine low, moderate and high ranges. Methods: Subjects were 459 Brisbane women aged 42-81 years participating in the Longitudinal Assessment of Ageing in Women. Diet history interviews were used to assess usual diet and results were analysed into energy and macronutrients using the FoodWorks dietary analysis program combined with a customised GI database. Results: Mean±SD dietary GI was 55.6±4.4% and mean dietary GL was 115±25. A low GI in this population was ≤52.0, corresponding to the lowest quintile of dietary GI, and a low GL was ≤95. GI showed a quadratic relationship with age (P=0.01), with a slight decrease observed in women aged in their 60’s relative to younger or older women. GL decreased linearly with age (P<0.001). Bread was the main contributor to carbohydrate and dietary GL (17.1% and 20.8%, respectively), followed by fruit (15.5% and 14.2%), and dairy for carbohydrate (9.0%) or breakfast cereals for GL (8.9%). Conclusions: In this population, dietary GL decreased with increasing age, however this was likely to be a result of higher energy intakes in younger women. Focus on careful selection of lower GI items within bread and breakfast cereal food groups would be an effective strategy for decreasing dietary GL in this population of older women.
Resumo:
Background: Diets with a high postprandial glycemic response may contribute to long-term development of insulin resistance and diabetes, however previous epidemiological studies are conflicting on whether glycemic index (GI) or glycemic load (GL) are dietary factors associated with the progression. Our objectives were to estimate GI and GL in a group of older women, and evaluate cross-sectional associations with insulin resistance. Subjects and Methods: Subjects were 329 Australian women aged 42-81 years participating in year three of the Longitudinal Assessment of Ageing in Women (LAW). Dietary intakes were assessed by diet history interviews and analysed using a customised GI database. Insulin resistance was defined as a homeostasis model assessment (HOMA) value of >3.99, based on fasting blood glucose and insulin concentrations. Results: GL was significantly higher in the 26 subjects who were classified as insulin resistant compared to subjects who were not (134±33 versus 114±24, P<0.001). In a logistic regression model, an increment of 15 GL units increased the odds of insulin resistance by 2.09 (95%CI 1.55, 2.80, P<0.001) independently of potential confounding variables. No significant associations were found when insulin resistance was assessed as a continuous variable. Conclusions: Results of this cross-sectional study support the concept that diets with a higher GL are associated with increased risk of insulin resistance. Further studies are required to investigate whether reducing glycemic intake, by either consuming lower GI foods and/or smaller serves of carbohydrate, can contribute to a reduction in development of insulin resistance and long-term risk of type 2 diabetes.
Resumo:
The purpose of this proof-of-concept study was to determine the relevance of direct measurements to monitor the load applied on the osseointegrated fixation of transfemoral amputees during static load bearing exercises. The objectives were (A) to introduce an apparatus using a three-dimensional load transducer, (B) to present a range of derived information relevant to clinicians, (C) to report on the outcomes of a pilot study and (D) to compare the measurements from the transducer with those from the current method using a weighing scale. One transfemoral amputee fitted with an osseointegrated implant was asked to apply 10 kg, 20 kg, 40 kg and 80 kg on the fixation, using self-monitoring with the weighing scale. The loading was directly measured with a portable kinetic system including a six-channel transducer, external interface circuitry and a laptop. As the load prescribed increased from 10 kg to 80 kg, the forces and moments applied on and around the antero-posterior axis increased by 4 fold anteriorly and 14 fold medially, respectively. The forces and moments applied on and around the medio-lateral axis increased by 9 fold laterally and 16 fold from anterior to posterior, respectively. The long axis of the fixation was overloaded and underloaded in 17 % and 83 % of the trials, respectively, by up to ±10 %. This proof-of-concept study presents an apparatus that can be used by clinicians facing the challenge of improving basic knowledge on osseointegration, for the design of equipment for load bearing exercises and for rehabilitation programs.
Resumo:
This paper proposes new droop control methods for load sharing in a rural area with distributed generation. Highly resistive lines, typical of rural low voltage networks, always create a big challenge for conventional droop control. To overcome the conflict between higher feedback gain for better power sharing and system stability in angle droop, two control methods have been proposed. The first method considers no communication among the distributed generators (DGs) and regulates the converter output voltage and angle ensuring proper sharing of load in a system having strong coupling between real and reactive power due to high line resistance. The second method, based on a smattering of communication, modifies the reference output volt-age angle of the DGs depending on the active and reactive power flow in the lines connected to point of common coupling (PCC). It is shown that with the second proposed control method, an economical and minimum communication system can achieve significant improvement in load sharing. The difference in error margin between proposed control schemes and a more costly high bandwidth communication system is small and the later may not be justified considering the increase in cost. The proposed control shows stable operation of the system for a range of operating conditions while ensuring satisfactory load sharing.
Resumo:
This paper investigates the problem of appropriate load sharing in an autonomous microgrid. High gain angle droop control ensures proper load sharing, especially under weak system conditions. However it has a negative impact on overall stability. Frequency domain modeling, eigenvalue analysis and time domain simulations are used to demonstrate this conflict. A supplementary loop is proposed around a conventional droop control of each DG converter to stabilize the system while using high angle droop gains. Control loops are based on local power measurement and modulation of the d-axis voltage reference of each converter. Coordinated design of supplementary control loops for each DG is formulated as a parameter optimization problem and solved using an evolutionary technique. The sup-plementary droop control loop is shown to stabilize the system for a range of operating conditions while ensuring satisfactory load sharing.
Resumo:
This paper describes control methods for proper load sharing between parallel converters connected in a microgrid and supplied by distributed generators (DGs). It is assumed that the microgrid spans a large area and it supplies loads in both in grid connected and islanded modes. A control strategy is proposed to improve power quality and proper load sharing in both islanded and grid connected modes. It is assumed that each of the DGs has a local load connected to it which can be unbalanced and/or nonlinear. The DGs compensate the effects of unbalance and nonlinearity of the local loads. Common loads are also connected to the microgrid, which are supplied by the utility grid under normal conditions. However during islanding, each of the DGs supplies its local load and shares the common load through droop characteristics. Both impedance and motor loads are considered to verify the system response. The efficacy of the controller has been validated through simulation for various operating conditions using PSCAD. It has been found through simulation that the total Harmonic Distortion (THD) of the of the microgrid voltage is about 10% and the negative and zero sequence component are around 20% of the positive sequence component before compensation. After compensation, the THD remain below 0.5%, whereas, negative and zero sequence components of the voltages remain below 0.02% of the positive sequence component.
Resumo:
Falling represents a health risk for lower limb amputees fitted with an osseointegrated fixation mainly because of the potential damage to the fixation. The purpose of this study was to characterise a real forward fall that occurred inadvertently to a transfemoral amputee fitted with an osseointegrated fixation while attending a gait measurement session to assess the load applied on the residuum. The objective was to analyse the load applied on the fixation with an emphasis on the sequence of events, the pattern and the magnitude of the forces and moments. The load was measured directly at 200 Hz using a six-channel transducer. Complementary video footage was also studied. The fall was divided into four phases: loading (240 ms), descent (620 ms), impact (365 ms) and recovery (2495 ms). The main impact forces and moments occurred 870 ms and 915 ms after the heel contact, and corresponded to 133 %BW and 17 %BWm, or 1.2 and 11.2 times the maximum forces and moments applied during the previous steps of the participant, respectively. This study provided key information to engineers and clinicians facing the challenge to design equipment, and rehabilitation and exercise programs to restore safely the locomotion of lower limb amputees.