141 resultados para LITHIUM STORAGE
Resumo:
This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.
Resumo:
A mechanochemical synthesis process has been used to synthesise aluminium nanoparticles. The aluminium is synthesised via a solid state chemical reaction which is initiated inside a ball mill at room temperature between either lithium (Li) or sodium (Na) metal which act as reducing agents with unreduced aluminium chloride (AlCl3). The reaction product formed consists of aluminium nanoparticles embedded within a by-product salt phase (LiCl or NaCl, respectively). The LiCl is washed with a suitable solvent resulting in aluminium (Al) nanoparticles which are not oxidised and are separated from the byproduct phase. Synthesis and washing was confirmed using X-ray diffraction (XRD). Nanoparticles were found to be ∼25–100nm from transmission electron microscopy (TEM) and an average size of 55nm was determined fromsmall angle X-ray scattering (SAXS) measurements. As synthesised Al/NaCl composites, washed Al nanoparticles, and purchased Al nanoparticles were deuterium (D2) absorption tested up to 2 kbar at a variety of temperatures, with no absorption detected within system resolution.
Resumo:
A statistical approach is used in the design of a battery-supercapacitor energy storage system for a wind farm. The design exploits the technical merits of the two energy storage mediums, in terms of the differences in their specific power and energy densities, and their ability to accommodate different rates of change in the charging/discharging powers. By treating the input wind power as random and using a proposed coordinated power flows control strategy for the battery and the supercapacitor, the approach evaluates the energy storage capacities, the corresponding expected life cycle cost/year of the storage mediums, and the expected cost/year of unmet power dispatch. A computational procedure is then developed for the design of a least-cost/year hybrid energy storage system to realize wind power dispatch at a specified confidence level.
Resumo:
This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.
Resumo:
In this paper, a wind energy conversion system interfaced to the grid using a dual inverter is proposed. One of the two inverters in the dual inverter is connected to the rectified output of the wind generator while the other is directly connected to a battery energy storage system (BESS). This approach eliminates the need for an additional dc-dc converter and thus reduces power losses, cost, and complexity. The main issue with this scheme is uncorrelated dynamic changes in dc-link voltages that results in unevenly distributed space vectors. A detailed analysis on the effects of these variations is presented in this paper. Furthermore, a modified modulation technique is proposed to produce undistorted currents even in the presence of unevenly distributed and dynamically changing space vectors. An analysis on the battery charging/discharging process and maximum power point tracking of the wind turbine generator is also presented. Simulation and experimental results are presented to verify the efficacy of the proposed modulation technique and battery charging/discharging process.
Resumo:
It is accepted that the accelerated differentiation of tissue cells on bioactive materials is of great importance to regenerate the lost tissues. It was previously reported that lithium (Li) ions could enhance the in vitro proliferation and differentiation of retinoblastoma cells and endometrium epithelia by activating the Wnt canonical signalling pathway. It is interesting to incorporate Li ions into bioactive ceramics, such as β-tricalcium phosphate (Li-β-TCP), in order to stimulate both osteogenic and cementogenic differentiation of different stem cells for the regeneration of bone/periodontal tissues. Therefore, the aim of this study was to investigate the interactions of human periodontal ligament cells (hPDLCs) and human bone marrow stromal cells (hBMSCs) with Li-β-TCP bioceramic bulks and their ionic extracts, and further explore the osteogenic and cementogenic stimulation of Li-β-TCP bioceramics and the possible molecular mechanisms. The results showed that Li-β-TCP bioceramic disks supported the cell attachment and proliferation, and significantly enhanced bone/cementum-related gene expression, Wnt canonical signalling pathway activation for both hPDLCs and hBMSCs, compared to conventional β-TCP bioceramic disks without Li. The release of Li from Li-β-TCP powders could significantly promote the bone/cementum-related gene expression for both hPDLCs and hBMSCs compared to pure β-TCP extracts without Li release. Our results suggest that the combination of Li with β-TCP bioceramics may be a promising method to enhance bone/cementum regeneration as Li-β-TCP possesses excellent in vitro osteogenic and cementogenic stimulation properties by inducing bone/cementum-related gene expression in both hPDLCs and hBMSCs.
Resumo:
Porous high surface area thin films of nanosheet-shaped monoclinic MoO 3 were deposited onto platinized Si substrates using patch antenna-based atmospheric microplasma processing. The films were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and electrochemical analysis. The electrochemical analysis shows original redox peaks and high charge capacity, and also indicates a reversible electrochemical behaviour particularly beneficial for applications in Li-ion batteries. SEM shows that the films are highly porous and consist of nanosheets 50-100 nm thick with surface dimensions in the micrometre range. HRTEM reveals that the MoO3 nanosheets consist of the monoclinic beta phase of MoO3. These intricate nanoarchitectures made of monoclinic MoO3 nanosheets have not been studied previously in the context of applications in Li-ion batteries and show superior structural and morphological features that enable effective insertion of Li ions.
Resumo:
Design of a battery energy storage system (BESS) in a buffer scheme is examined for the purpose of attenuating the effects of unsteady input power from wind farms. The design problem is formulated as maximization of an objective function that measures the economic benefit obtainable from the dispatched power from the wind farm against the cost of the BESS. Solution to the problem results in the determination of the capacity of the BESS to ensure constant dispatched power to the connected grid, while the voltage level across the dc-link of the buffer is kept within preset limits. A computational procedure to determine the BESS capacity and the evaluation of the dc voltage is shown. Illustrative examples using the proposed design method are included.
Resumo:
This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.
Resumo:
A novel replaceable, modularized energy storage system with wireless interface is proposed for a battery operated electric vehicle (EV). The operation of the proposed system is explained and analyzed with an equivalent circuit and an averaged state-space model. A non-linear feedback linearization based controller is developed and implemented to regulate the DC link voltage by modulating the phase shift ratio. The working and control of the proposed system is verified through simulation and some preliminary results are presented.
Resumo:
Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.
Resumo:
The surface enhanced Raman scattering effect has shown immense potential for detecting trace amounts of explosive vapor molecules. To date, efforts to produce a commercially available, reliable SERS sensor have been impeded by an inability to separate the electromagnetic enhancement produced by the metallic nanostructure from other signal enhancing effects. Here, we show a new Raman sensor that uses surface acoustic waves (SAWs) to produce controllable surface structures on gold films deposited on LiNbO3 substrates that modulate the Raman signal of a target compound (thiophenol) adsorbed on the films. We demonstrate that this sensor can dynamically control the Raman signal simply by changing the SAW’s amplitude, allowing the Raman signal enhancement factor to be directly measured with no variation in the concentration of the target compound. The physically adsorbed molecules can be removed from the sensor without physical cleaning or damage, making it possible to reuse it for real-time Raman detection.
Resumo:
A hybrid energy storage system (HESS) consisting of battery and supercapacitor (SC) is proposed for use in a wind farm in order to achieve power dispatchability. In the designed scheme, the rate of charging/discharging powers of the battery is controlled while the faster wind power transients are diverted to the SC. This enhances the lifetime of the battery. Furthermore, by taking into consideration the random nature of the wind power, a statistical design method is developed to determine the capacities of the HESS needed to achieve specified confidence level in the power dispatch. The proposed approach is useful in the planning of the wind farm-HESS scheme and the coordination of the power flows between the battery and SC.
Resumo:
Additional converters that are used to interface energy storage devices incur power losses as well as increased system cost and complexity. The need for additional converters can be eliminated if the grid side inverter can itself be effectively used as the interface for energy storage. This paper therefore proposes a technique whereby the grid side inverter can also be used as an interface to connect a supercapacitor energy storage for wind energy conversion systems. The proposed grid side inverter is formed by cascading a 3-level inverter and a 2-level inverter through a coupling transformer. The three-level inverter is the main inverter and it is powered by the rectified output of the wind turbine coupled AC generator while the 2-level auxiliary inverter is connected to the super capacitor bank that is used to compensate short term power fluctuations. Novel modulation and control techniques are proposed to address the problems associated with non-integer and dynamically-changing dc-link voltage ratio, which is caused by the random nature of wind. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.
Resumo:
This paper presents a novel concept of Energy Storage System (ESS) interfacing with the grid side inverter in wind energy conversion systems. The inverter system used here is formed by cascading a 2-level inverter and a three level inverter through a coupling transformer. The constituent inverters are named as the “main inverter” and the “auxiliary inverter” respectively. The main inverter is connected with the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). The BESS ensures constant power dispatch to the grid irrespective of change in wind condition. Furthermore, this unique combination of BESS and inverter eliminates the need of additional dc-dc converters. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-changing dc-link voltage ratio, which is due to random wind changes. Strategies used to handle auxiliary inverter dc-link voltage imbalances and controllers used to charge batteries at different rates are explained in detail. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques in suppressing random wind power fluctuations.