95 resultados para LARGE-SCALE FERTILIZATION
Resumo:
Rapid advances in sequencing technologies (Next Generation Sequencing or NGS) have led to a vast increase in the quantity of bioinformatics data available, with this increasing scale presenting enormous challenges to researchers seeking to identify complex interactions. This paper is concerned with the domain of transcriptional regulation, and the use of visualisation to identify relationships between specific regulatory proteins (the transcription factors or TFs) and their associated target genes (TGs). We present preliminary work from an ongoing study which aims to determine the effectiveness of different visual representations and large scale displays in supporting discovery. Following an iterative process of implementation and evaluation, representations were tested by potential users in the bioinformatics domain to determine their efficacy, and to understand better the range of ad hoc practices among bioinformatics literate users. Results from two rounds of small scale user studies are considered with initial findings suggesting that bioinformaticians require richly detailed views of TF data, features to compare TF layouts between organisms quickly, and ways to keep track of interesting data points.
Resumo:
Prostate cancer is the second most common malignancy among men worldwide. Genome-wide association studies have identified 100 risk variants for prostate cancer, which can explain approximately 33% of the familial risk of the disease. We hypothesized that a comprehensive analysis of genetic variations found within the 3' untranslated region of genes predicted to affect miRNA binding (miRSNP) can identify additional prostate cancer risk variants. We investigated the association between 2,169 miRSNPs and prostate cancer risk in a large-scale analysis of 22,301 cases and 22,320 controls of European ancestry from 23 participating studies. Twenty-two miRSNPs were associated (P<2.3×10(-5)) with risk of prostate cancer, 10 of which were within 7 genes previously not mapped by GWAS studies. Further, using miRNA mimics and reporter gene assays, we showed that miR-3162-5p has specific affinity for the KLK3 rs1058205 miRSNP T-allele, whereas miR-370 has greater affinity for the VAMP8 rs1010 miRSNP A-allele, validating their functional role. SIGNIFICANCE Findings from this large association study suggest that a focus on miRSNPs, including functional evaluation, can identify candidate risk loci below currently accepted statistical levels of genome-wide significance. Studies of miRNAs and their interactions with SNPs could provide further insights into the mechanisms of prostate cancer risk.
Resumo:
The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and sup-port vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on large-scale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep auto encoder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.
Resumo:
Twitter’s hashtag functionality is now used for a very wide variety of purposes, from covering crises and other breaking news events through gathering an instant community around shared media texts (such as sporting events and TV broadcasts) to signalling emotive states from amusement to despair. These divergent uses of the hashtag are increasingly recognised in the literature, with attention paid especially to the ability for hashtags to facilitate the creation of ad hoc or hashtag publics. A more comprehensive understanding of these different uses of hashtags has yet to be developed, however. Previous research has explored the potential for a systematic analysis of the quantitative metrics that could be generated from processing a series of hashtag datasets. Such research found, for example, that crisis-related hashtags exhibited a significantly larger incidence of retweets and tweets containing URLs than hashtags relating to televised events, and on this basis hypothesised that the information-seeking and -sharing behaviours of Twitter users in such different contexts were substantially divergent. This article updates such study and their methodology by examining the communicative metrics of a considerably larger and more diverse number of hashtag datasets, compiled over the past five years. This provides an opportunity both to confirm earlier findings, as well as to explore whether hashtag use practices may have shifted subsequently as Twitter’s userbase has developed further; it also enables the identification of further hashtag types beyond the “crisis” and “mainstream media event” types outlined to date. The article also explores the presence of such patterns beyond recognised hashtags, by incorporating an analysis of a number of keyword-based datasets. This large-scale, comparative approach contributes towards the establishment of a more comprehensive typology of hashtags and their publics, and the metrics it describes will also be able to be used to classify new hashtags emerging in the future. In turn, this may enable researchers to develop systems for automatically distinguishing newly trending topics into a number of event types, which may be useful for example for the automatic detection of acute crises and other breaking news events.
Resumo:
As process management projects have increased in size due to globalised and company-wide initiatives, a corresponding growth in the size of process modeling projects can be observed. Despite advances in languages, tools and methodologies, several aspects of these projects have been largely ignored by the academic community. This paper makes a first contribution to a potential research agenda in this field by defining the characteristics of large-scale process modeling projects and proposing a framework of related issues. These issues are derived from a semi -structured interview and six focus groups conducted in Australia, Germany and the USA with enterprise and modeling software vendors and customers. The focus groups confirm the existence of unresolved problems in business process modeling projects. The outcomes provide a research agenda which directs researchers into further studies in global process management, process model decomposition and the overall governance of process modeling projects. It is expected that this research agenda will provide guidance to researchers and practitioners by focusing on areas of high theoretical and practical relevance.
Resumo:
This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.
Resumo:
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Resumo:
Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.
Resumo:
The automated extraction of roads from aerial imagery can be of value for tasks including mapping, surveillance and change detection. Unfortunately, there are no public databases or standard evaluation protocols for evaluating these techniques. Many techniques are further hindered by a reliance on manual initialisation, making large scale application of the techniques impractical. In this paper, we present a public database and evaluation protocol for the evaluation of road extraction algorithms, and propose an improved automatic seed finding technique to initialise road extraction, based on a combination of geometric and colour features.
Resumo:
This study investigates escalation of intra-familial conflicts in family top management teams. Using a Critical Incident Technique approach, this study uses interviews to collect data from 23 family and non-family individuals and groups within six large-scale privately-held family businesses in Indonesia. The study develops a theoretical model to explain why family business conflicts escalate and become destructive. An inductive content analysis found that the use of a dominating strategy by both parties in dealing with conflict, the expression of negative emotions, and the involvement of non-family employees are more likely to cause escalation. This study contributes to the theory of family business conflict to help family business more satisfying and productive.
Resumo:
The terrorist attacks in the United States on September 11, 2001 appeared to be a harbinger of increased terrorism and violence in the 21st century, bringing terrorism and political violence to the forefront of public discussion. Questions about these events abound, and “Estimating the Historical and Future Probabilities of Large Scale Terrorist Event” [Clauset and Woodard (2013)] asks specifically, “how rare are large scale terrorist events?” and, in general, encourages discussion on the role of quantitative methods in terrorism research and policy and decision-making. Answering the primary question raises two challenges. The first is identify- ing terrorist events. The second is finding a simple yet robust model for rare events that has good explanatory and predictive capabilities. The challenges of identifying terrorist events is acknowledged and addressed by reviewing and using data from two well-known and reputable sources: the Memorial Institute for the Prevention of Terrorism-RAND database (MIPT-RAND) [Memorial Institute for the Prevention of Terrorism] and the Global Terror- ism Database (GTD) [National Consortium for the Study of Terrorism and Responses to Terrorism (START) (2012), LaFree and Dugan (2007)]. Clauset and Woodard (2013) provide a detailed discussion of the limitations of the data and the models used, in the context of the larger issues surrounding terrorism and policy.
Resumo:
The growing public concern about the complexity, cost and uncertain efficacy of the statuary environmental impact assessment process applying to large-scale projects in Queensland is reviewed. This is based on field data gathered over the past six years sat large-scale marina developments that access major environmental reserves along the coast. An ecological design proposal to broaden the process consisted with both government aspirations and regional ecological parameters - termed Regional Landscape Strategies - would allow the existing Environmental Impact Asessment to be modified alone potentially more practicable and effective lines.
Resumo:
In elite sports, nearly all performances are captured on video. Despite the massive amounts of video that has been captured in this domain over the last 10-15 years, most of it remains in an 'unstructured' or 'raw' form, meaning it can only be viewed or manually annotated/tagged with higher-level event labels which is time consuming and subjective. As such, depending on the detail or depth of annotation, the value of the collected repositories of archived data is minimal as it does not lend itself to large-scale analysis and retrieval. One such example is swimming, where each race of a swimmer is captured on a camcorder and in-addition to the split-times (i.e., the time it takes for each lap), stroke rate and stroke-lengths are manually annotated. In this paper, we propose a vision-based system which effectively 'digitizes' a large collection of archived swimming races by estimating the location of the swimmer in each frame, as well as detecting the stroke rate. As the videos are captured from moving hand-held cameras which are located at different positions and angles, we show our hierarchical-based approach to tracking the swimmer and their different parts is robust to these issues and allows us to accurately estimate the swimmer location and stroke rates.
Resumo:
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.
Resumo:
1.Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management. 2.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required. 3.The ‘Catlin Seaview Survey’, described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6 m2. 4.The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health. 5.Imagery datasets from an initial survey of 500 km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset. 6.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.