107 resultados para JUDO TEAM


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In explaining how communication quality predicts TMS in multidisciplinary teams, we drew on the social identity approach to investigate the mediating role of team identification and the moderating role of professional identification. Recognizing that professional identification could trigger intergroup biases among professional subgroups, or alternatively, could bring resources to the team, we explored the potential moderating role of professional identification in the relationship between team identification and TMS. Using data collected from 882 healthcare personnel working in 126 multidisciplinary hospital teams, results supported our hypothesis that perceived communication quality predicted TMS through team identification. Furthermore, findings provided support for a resource view of professional subgroup identities with results indicating that high levels of professional identification compensated for low levels of team identification in predicting TMS. We provide recommendations on how social identities may be used to promote TMS in multidisciplinary teams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To the trained-eye, experts can often identify a team based on their unique style of play due to their movement, passing and interactions. In this paper, we present a method which can accurately determine the identity of a team from spatiotemporal player tracking data. We do this by utilizing a formation descriptor which is found by minimizing the entropy of role-specific occupancy maps. We show how our approach is significantly better at identifying different teams compared to standard measures (i.e., shots, passes etc.). We demonstrate the utility of our approach using an entire season of Prozone player tracking data from a top-tier professional soccer league.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their unobtrusive nature, vision-based approaches to tracking sports players have been preferred over wearable sensors as they do not require the players to be instrumented for each match. Unfortunately however, due to the heavy occlusion between players, variation in resolution and pose, in addition to fluctuating illumination conditions, tracking players continuously is still an unsolved vision problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and false player detections) is problematic as it generates discontinuities in the input data stream. One method of circumventing this issue is to use an occupancy map, where the field is discretised into a series of zones and a count of player detections in each zone is obtained. A series of frames can then be concatenated to represent a set-play or example of team behaviour. A problem with this approach though is that the compressibility is low (i.e. the variability in the feature space is incredibly high). In this paper, we propose the use of a bilinear spatiotemporal basis model using a role representation to clean-up the noisy detections which operates in a low-dimensional space. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labeled data.