138 resultados para Inositol Phosphates -- physiology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite a central role in angiosperm reproduction, few gametophyte-specific genes and promoters have been isolated, particularly for the inaccessible female gametophyte (embryo sac). Using the Ds-based enhancer-detector line ET253, we have cloned an egg apparatus-specific enhancer (EASE) from Arabidopsis (Arabidopsis thaliana). The genomic region flanking the Ds insertion site was further analyzed by examining its capability to control gusA and GFP reporter gene expression in the embryo sac in a transgenic context. Through analysis of a 5' and 3' deletion series in transgenic Arabidopsis, the sequence responsible for egg apparatus-specific expression was delineated to 77 bp. Our data showed that this enhancer is unique in the Arabidopsis genome, is conserved among different accessions, and shows an unusual pattern of sequence variation. This EASE works independently of position and orientation in Arabidopsis but is probably not associated with any nearby gene, suggesting either that it acts over a large distance or that a cryptic element was detected. Embryo-specific ablation in Arabidopsis was achieved by transactivation of a diphtheria toxin gene under the control of the EASE. The potential application of the EASE element and similar control elements as part of an open-source biotechnology toolkit for apomixis is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer aided technologies, medical imaging, and rapid prototyping has created new possibilities in biomedical engineering. The systematic variation of scaffold architecture as well as the mineralization inside a scaffold/bone construct can be studied using computer imaging technology and CAD/CAM and micro computed tomography (CT). In this paper, the potential of combining these technologies has been exploited in the study of scaffolds and osteochondral repair. Porosity, surface area per unit volume and the degree of interconnectivity were evaluated through imaging and computer aided manipulation of the scaffold scan data. For the osteochondral model, the spatial distribution and the degree of bone regeneration were evaluated. In this study the versatility of two softwares Mimics (Materialize), CTan and 3D realistic visualization (Skyscan) were assessed, too.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – This paper aims to present a novel rapid prototyping (RP) fabrication methods and preliminary characterization for chitosan scaffolds. Design – A desktop rapid prototyping robot dispensing (RPBOD) system has been developed to fabricate scaffolds for tissue engineering (TE) applications. The system is a computer-controlled four-axis machine with a multiple-dispenser head. Neutralization of the acetic acid by the sodium hydroxide results in a precipitate to form a gel-like chitosan strand. The scaffold properties were characterized by scanning electron microscopy, porosity calculation and compression test. An example of fabrication of a freeform hydrogel scaffold is demonstrated. The required geometric data for the freeform scaffold were obtained from CT-scan images and the dispensing path control data were converted form its volume model. The applications of the scaffolds are discussed based on its potential for TE. Findings – It is shown that the RPBOD system can be interfaced with imaging techniques and computational modeling to produce scaffolds which can be customized in overall size and shape allowing tissue-engineered grafts to be tailored to specific applications or even for individual patients. Research limitations/implications – Important challenges for further research are the incorporation of growth factors, as well as cell seeding into the 3D dispensing plotting materials. Improvements regarding the mechanical properties of the scaffolds are also necessary. Originality/value – One of the important aspects of TE is the design scaffolds. For customized TE, it is essential to be able to fabricate 3D scaffolds of various geometric shapes, in order to repair tissue defects. RP or solid free-form fabrication techniques hold great promise for designing 3D customized scaffolds; yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This paper presents a novel attempt to fabricate 3D scaffolds, using hydrogels which in the future can be combined with cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell sheets can be used to produce neo-tissue with mature extracellular matrix. However, extensive contraction of cell sheets remains a problem. We devised a technique to overcome this problem and applied it to tissue engineer a dermal construct. Human dermal fibroblasts were cultured with poly(lactic-co-glycolic acid)-collagen meshes and collagen-hyaluronic acid foams. Resulting cell sheets were folded over the scaffolds to form dermal constructs. Human keratinocytes were cultured on these dermal constructs to assess their ability to support bilayered skin regeneration. Dermal constructs produced with collagen-hyaluronic acid foams showed minimal contraction, while those with poly(lactic-co-glycolic acid)-collagen meshes curled up. Cell proliferation and metabolic activity profiles were characterized with PicoGreen and AlamarBlue assays, respectively. Fluorescent labeling showed high cell viability and F-actin expression within the constructs. Collagen deposition was detected by immunocytochemistry and electron microscopy. Transforming Growth Factor-alpha and beta1, Keratinocyte Growth Factor and Vascular Endothelial Growth Factor were produced at various stages of culture, measured by RT-PCR and ELISA. These results indicated that assimilating cell sheets with mechanically stable scaffolds could produce viable dermal-like constructs that do not contract. Repeated enzymatic treatment cycles for cell expansion is unnecessary, while the issue of poor cell seeding efficiency in scaffolds is eliminated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of medical grade polycaprolactone–tricalcium phosphate (mPCL–TCP) (80:20) scaffolds on primary human alveolar osteoblasts (AOs) were compared with standard tissue-culture plates. Of the seeded AOs, 70% adhered to and proliferated on the scaffold surface and within open and interconnected pores; they formed multi-layered sheets and collagen fibers with uniform distribution within 28 days. Elevation of alkaline phosphatase activity occurred in scaffold–cell constructs independent of osteogenic induction. AO proliferation rate increased and significant decrease in calcium concentration of the medium for both scaffolds and plates under induction conditions were seen. mPCL–TCP scaffolds significantly influenced the AO expression pattern of osterix and osteocalcin (OCN). Osteogenic induction down-regulated OCN at both RNA and protein level on scaffolds (3D) by day 7, and up-regulated OCN in cell-culture plates (2D) by day 14, but OCN levels on scaffolds were higher than on cell-culture plates. Immunocytochemical signals for type I collagen, osteopontin and osteocalcin were detected at the outer parts of scaffold–cell constructs. More mineral nodules were found in induced than in non-induced constructs. Only induced 2D cultures showed nodule formation. mPCL–TCP scaffolds appear to stimulate osteogenesis in vitro by activating a cellular response in AO's to form mineralized tissue. There is a fundamental difference between culturing AOs on 2D and 3D environments that should be considered when studying osteogenesis in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the feasibility and potential of a hybrid scaffold system in large- and high-load-bearing osteochondral defects repair. The implants were made of medical-grade PCL (mPCL) for the bone compartment whereas fibrin glue was used for the cartilage part. Both matrices were seeded with allogenic bone marrow-derived mesenchymal cells (BMSC) and implanted in the defect (4 mm diameter×5 mm depth) on medial femoral condyle of adult New Zealand White rabbits. Empty scaffolds were used at the control side. Cell survival was tracked via fluorescent labeling. The regeneration process was evaluated by several techniques at 3 and 6 months post-implantation. Mature trabecular bone regularly formed in the mPCL scaffold at both 3 and 6 months post-operation. Micro-Computed Tomography showed progression of mineralization from the host–tissue interface towards the inner region of the grafts. At 3 months time point, the specimens showed good cartilage repair. In contrast, the majority of 6 months specimens revealed poor remodeling and fissured integration with host cartilage while other samples could maintain good cartilage appearance. In vivo viability of the transplanted cells was demonstrated for the duration of 5 weeks. The results demonstrated that mPCL scaffold is a potential matrix for osteochondral bone regeneration and that fibrin glue does not inherit the physical properties to allow for cartilage regeneration in a large and high-load-bearing defect site. Keywords: Osteochondral tissue engineering; Scaffold; Bone marrow-derived precursor cells; Fibrin glue

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a bioreactor vessel design which has the advantages of simplicity and ease of assembly and disassembly, and with the appropriately determined flow rate, even allows for a scaffold to be suspended freely regardless of its weight. This article reports our experimental and numerical investigations to evaluate the performance of a newly developed non-perfusion conical bioreactor by visualizing the flow through scaffolds with 45° and 90° fiber lay down patterns. The experiments were conducted at the Reynolds numbers (Re) 121, 170, and 218 based on the local velocity and width of scaffolds. The flow fields were captured using short-time exposures of 60 µm particles suspended in the bioreactor and illuminated using a thin laser sheet. The effects of scaffold fiber lay down pattern and Reynolds number were obtained and correspondingly compared to results obtained from a computational fluid dynamics (CFD) software package. The objectives of this article are twofold: to investigate the hypothesis that there may be an insufficient exchange of medium within the interior of the scaffold when using our non-perfusion bioreactor, and second, to compare the flows within and around scaffolds of 45° and 90° fiber lay down patterns. Scaffold porosity was also found to influence flow patterns. It was therefore shown that fluidic transport could be achieved within scaffolds with our bioreactor design, being a non-perfusion vessel. Fluid velocities were generally same of the same or one order lower in magnitude as compared to the inlet flow velocity. Additionally, the 90° fiber lay down pattern scaffold was found to allow for slightly higher fluid velocities within, as compared to the 45° fiber lay down pattern scaffold. This was due to the architecture and pore arrangement of the 90° fiber lay down pattern scaffold, which allows for fluid to flow directly through (channel-like flow).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to compare the amount of exercise prescribed with the amount completed between two different modes of training intervention and between the sexes. Thirty-two men (mean age = 39.1 years, body mass index = 32.9 kg · m-2) and women (mean age = 39.6 years, body mass index = 32.1 kg · m-2) were prescribed traditional resistance training or light-resistance circuit training for 16 weeks. Lean mass and fat mass were determined by dual-energy X-ray absorptiometry at weeks 1 and 16. A completion index was calculated to provide a measure of the extent to which participants completed exercise training relative to the amount of exercise prescribed. The absolute amount of exercise completed by the circuit training group was significantly greater than the amount prescribed (P < 0.0001). The resistance training group consistently under-completed relative to the amount prescribed, but the difference was not significant. The completion index for the circuit training group (26 ± 21.7%) was significantly different from that of the resistance training group (-7.4 ± 3.0%). The completion index was not significantly different between men and women in either group. These data suggest that overweight and obese individuals participating in light-resistance circuit training complete more exercise than is prescribed. Men and women do not differ in the extent to which they over- or under-complete prescribed exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Despite the recognition of obesity in young people as a key health issue, there is limited evidence to inform health professionals regarding the most appropriate treatment options. The Eat Smart study aims to contribute to the knowledge base of effective dietary strategies for the clinical management of the obese adolescent and examine the cardiometablic effects of a reduced carbohydrate diet versus a low fat diet. Methods and design Eat Smart is a randomised controlled trial and aims to recruit 100 adolescents over a 2½ year period. Families will be invited to participate following referral by their health professional who has recommended weight management. Participants will be overweight as defined by a body mass index (BMI) greater than the 90th percentile, using CDC 2000 growth charts. An accredited 6-week psychological life skills program ‘FRIENDS for Life’, which is designed to provide behaviour change and coping skills will be undertaken prior to volunteers being randomised to group. The intervention arms include a structured reduced carbohydrate or a structured low fat dietary program based on an individualised energy prescription. The intervention will involve a series of dietetic appointments over 24 weeks. The control group will commence the dietary program of their choice after a 12 week period. Outcome measures will be assessed at baseline, week 12 and week 24. The primary outcome measure will be change in BMI z-score. A range of secondary outcome measures including body composition, lipid fractions, inflammatory markers, social and psychological measures will be measured. Discussion The chronic and difficult nature of treating the obese adolescent is increasingly recognised by clinicians and has highlighted the need for research aimed at providing effective intervention strategies, particularly for use in the tertiary setting. A structured reduced carbohydrate approach may provide a dietary pattern that some families will find more sustainable and effective than the conventional low fat dietary approach currently advocated. This study aims to investigate the acceptability and effectiveness of a structured reduced dietary carbohydrate intervention and will compare the outcomes of this approach with a structured low fat eating plan. Trial Registration: The protocol for this study is registered with the International Clinical Trials Registry (ISRCTN49438757).