178 resultados para Immunity.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia is responsible for a wide range of diseases with enormous global economic and health burden. As the majority of chlamydial infections are asymptomatic, a vaccine has greatest potential to reduce infection and disease prevalence. Protective immunity against Chlamydia requires the induction of a mucosal immune response, ideally, at the multiple sites in the body where an infection can be established. Mucosal immunity is most effectively stimulated by targeting vaccination to the epithelium, which is best accomplished by direct vaccine application to mucosal surfaces rather than by injection. The efficacy of needle-free vaccines however is reliant on a powerful adjuvant to overcome mucosal tolerance. As very few adjuvants have proven able to elicit mucosal immunity without harmful side effects, there is a need to develop non-toxic adjuvants or safer ways to administered pre-existing toxic adjuvants. In the present study we investigated the novel non-toxic mucosal adjuvant CTA1-DD. The immunogenicity of CTA1-DD was compared to our "gold-standard" mucosal adjuvant combination of cholera toxin (CT) and cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN). We also utilised different needle-free immunisation routes, intranasal (IN), sublingual (SL) and transcutaneous (TC), to stimulate the induction of immunity at multiple mucosal surfaces in the body where Chlamydia are known to infect. Moreover, administering each adjuvant by different routes may also limit the toxicity of the CT/CpG adjuvant, currently restricted from use in humans. Mice were immunised with either adjuvant together with the chlamydial major outer membrane protein (MOMP) to evaluate vaccine safety and quantify the induction of antigen-specific mucosal immune responses. The level of protection against infection and disease was also assessed in vaccinated animals following a live genital or respiratory tract infectious challenge. The non-toxic CTA1-DD was found to be safe and immunogenic when delivered via the IN route in mice, inducing a comparable mucosal response and level of protective immunity against chlamydial challenge to its toxic CT/CpG counterpart administered by the same route. The utilisation of different routes of immunisation strongly influenced the distribution of antigen-specific responses to distant mucosal surfaces and also abrogated the toxicity of CT/CpG. The CT/CpG-adjuvanted vaccine was safe when administered by the SL and TC routes and conferred partial immunity against infection and pathology in both challenge models. This protection was attributed to the induction of antigen-specific pro-inflammatory cellular responses in the lymph nodes regional to the site of infection and rather than in the spleen. Development of non-toxic adjuvants and effective ways to reduce the side effects of toxic adjuvants has profound implications for vaccine development, particularly against mucosal pathogens like Chlamydia. Interestingly, we also identified two contrasting vaccines in both infection models capable of preventing infection or pathology exclusively. This indicated that the development of pathology following an infection of vaccinated animals was independent of bacterial load and was instead the result of immunopathology, potentially driven by the adaptive immune response generated following immunisation. While both vaccines expressed high levels of interleukin (IL)-17 cytokines, the pathology protected group displayed significantly reduced expression of corresponding IL-17 receptors and hence an inhibition of signalling. This indicated that the balance of IL-17-mediated responses defines the degree of protection against infection and tissue damage generated following vaccination. This study has enabled us to better understand the immune basis of pathology and protection, necessary to design more effective vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia trachomatis continues to be the most commonly reported sexually transmitted bacterial infection in many countries with more than 100 million new cases estimated annually. These acute infections translate into significant downstream health care costs, particularly for women, where complications can include pelvic inflammatory disease and other disease sequelae such as tubal factor infertility. Despite years of research, the immunological mechanisms responsible for protective immunity versus immunopathology are still not well understood, although it is widely accepted that T cell driven IFN-g and Th17 responses are critical for clearing infection. While antibodies are able to neutralize infections in vitro, alone they are not protective, indicating that any successful vaccine will need to elicit both arms of the immune response. In recent years, there has been an expansion in the number and types of antigens that have been evaluated as vaccines, and combined with the new array of mucosal adjuvants, this aspect of chlamydial vaccinology is showing promise. Most recently, the opportunities to develop successful vaccines have been given a significant boost with the development of a genetic transformation system for Chlamydia, as well as the identification of the key role of the chlamydial plasmid in virulence. While still remaining a major challenge, the development of a successful C.trachomatis vaccine is starting to look more likely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the Revised International Prognostic Index's (R-IPI) undoubted utility in diffuse large B-cell lymphoma (DLBCL), significant clinical heterogeneity within R-IPI categories persists. Emerging evidence indicates that circulating host immunity is a robust and R-IPI independent prognosticator, most likely reflecting the immune status of the intratumoral microenvironment. We hypothesized that direct quantification of immunity within lymphomatous tissue would better permit stratification within R-IPI categories. We analyzed 122 newly diagnosed consecutive DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemo-immunotherapy. Median follow-up was 4 years. As expected, the R-IPI was a significant predictor of outcome with 5-year overall survival (OS) 87% for very good, 87% for good, and 51% for poor-risk R-IPI scores (P < 0.001). Consistent with previous reports, systemic immunity also predicted outcome (86% OS for high lymphocyte to monocyte ratio [LMR], versus 63% with low LMR, P = 0.01). Multivariate analysis confirmed LMR as independently prognostic. Flow cytometry on fresh diagnostic lymphoma tissue, identified CD4+ T-cell infiltration as the most significant predictor of outcome with ≥23% infiltration dividing the cohort into high and low risk groups with regard to event-free survival (EFS, P = 0.007) and OS (P = 0.003). EFS and OS were independent of the R-IPI and LMR. Importantly, within very good/good R-IPI patients, CD4+ T-cells still distinguished patients with different 5 year OS (high 96% versus low 63%, P = 0.02). These results illustrate the importance of circulating and local intratumoral immunity in DLBCL treated with R-CHOP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many primary immunodeficiency disorders of differing etiologies have been well characterized, and much understanding of immunological processes has been gained by investigating the mechanisms of disease. Here, we have used a whole-genome approach, employing single-nucleotide polymorphism and gene expression microarrays, to provide insight into the molecular etiology of a novel immunodeficiency disorder. Using DNA copy number profiling, we define a hyperploid region on 14q11.2 in the immunodeficiency case associated with the interleukin (IL)-25 locus. This alteration was associated with significantly heightened expression of IL25 following T-cell activation. An associated dominant type 2 helper T cell bias in the immunodeficiency case provides a mechanistic explanation for recurrence of infections by pathogens met by Th1-driven responses. Furthermore, this highlights the capacity of IL25 to alter normal human immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarum Major Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-transplantation lymphoproliferative disorders (PTLD) arise in the immunosuppressed and are frequently Epstein-Barr virus (EBV) associated. The most common PTLD histological sub-type is diffuse large B-cell lymphoma (EBV+DLBCL-PTLD). Restoration of EBV-specific T-cell immunity can induce EBV+DLBCL-PTLD regression. The most frequent B-cell lymphoma in the immunocompetent is also DLBCL. ‘EBV-positive DLBCL of the elderly’ (EBV+DLBCL) is a rare but well-recognized DLBCL entity that occurs in the overtly immunocompetent, that has an adverse outcome relative to EBV-negative DLBCL. Unlike PTLD (which is classified as viral latency III), literature suggests EBV+DLBCL is typically latency II, i.e. expression is limited to the immuno-subdominant EBNA1, LMP1 and LMP2 EBV-proteins. If correct, this would be a major impediment for T-cell immunotherapeutic strategies. Unexpectedly we observed EBV+DLBCL-PTLD and EBV+DLBCL both shared features consistent with type III EBV-latency, including expression of the immuno-dominant EBNA3A protein. Extensive analysis showed frequent polymorphisms in EBNA1 and LMP1 functionally defined CD8+ T-cell epitope encoding regions, whereas EBNA3A polymorphisms were very rare making this an attractive immunotherapy target. As with EBV+DLBCL-PTLD, the antigen presenting machinery within lymphomatous nodes was intact. EBV+DLBCL express EBNA3A suggesting it is amenable to immunotherapeutic strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia trachomatis infections of the male and female reproductive tracts are the world's leading sexually transmitted bacterial disease, and can lead to damaging pathology, scarring and infertility. The resolution of chlamydial infection requires the development of adaptive immune responses to infection, and includes cell-mediated and humoral immunity. Whilst cluster of differentiation (CD)4+ T cells are known to be essential in clearance of infection [1], they are also associated with immune cell infiltration, autoimmunity and infertility in the testes [2-3]. Conversely, antibodies are less associated with inflammation, are readily transported into the reproductive tracts, and can offer lumenal neutralization of chlamydiae prior to infection. Antibodies, or immunoglobulins (Ig), play a supportive role in the resolution of chlamydial infections, and this thesis sought to define the function of IgA and IgG, against a variety of chlamydial antigens expressed during the intracellular and extracellular stages of the chlamydial developmental cycle. Transport of IgA and IgG into the mucosal lumen is facilitated by receptor-mediated transcytosis yet the expression profile (under normal conditions and during urogenital chlamydial infection) of the polymeric immunoglobulin receptor (pIgR) and the neonatal Fc receptor (FcRn) remains unknown. The expression profile of pIgR and FcRn in the murine male reproductive tract was found to be polarized to the lower and upper reproductive tract tissues respectively. This demonstrates that the two receptors have a tissue tropism, which must be considered when targeting pathogens that colonize different sites. In contrast, the expression of pIgR and FcRn in the female mouse was found to be distributed in both the upper and lower reproductive tracts. When urogenitally infected with Chlamydia muridarum, both male and female reproductive tracts up-regulated expression of pIgR and down-regulated expression of FcRn. Unsurprisingly, the up-regulation of pIgR increased the concentration of IgA in the lumen. However, down-regulation of FcRn, prevented IgG uptake and led to an increase or pooling of IgG in lumenal secretions. As previous studies have identified the importance of pIgR-mediated delivery of IgA, as well as the potential of IgA to bind and neutralize intracellular pathogens, IgA against a variety of chlamydial antigens was investigated. The protection afforded by IgA against the extracellular antigen major outer membrane protein (MOMP), was found to be dependent on pIgR expression in vitro and in vivo. It was also found that in the absence of pIgR, no protection was afforded to mice previously immunized with MOMP. The protection afforded from polyclonal IgA against the intracellular chlamydial antigens; inclusion membrane protein A (IncA), inclusion membrane proteins (IncMem) and secreted chlamydial protease-like activity factor (CPAF) were produced and investigated in vitro. Antigen-specific intracellular IgA was found to bind to the respective antigen within the infected cell, but did not significantly reduce inclusion formation (p > 0.05). This suggests that whilst IgA specific for the selected antigens was transported by pIgR to the chlamydial inclusion, it was unable to prevent growth. Similarly, immunization of male mice with intracellular chlamydial antigens (IncA or IncMem), followed by depletion CD4+ T cells, and subsequent urogenital C. muridarum challenge, provided minimal pIgR-mediated protection. Wild type male mice immunized with IncA showed a 57 % reduction (p < 0.05), and mice deficient in pIgR showed a 35 % reduction (p < 0.05) in reproductive tract chlamydial burden compared to control antigen, and in the absence of CD4+ T cells. This suggests that pIgR and secretory IgA (SIgA) were playing a protective role (21 % pIgR-mediated) in unison with another antigen-specific immune mechanism (36 %). Interestingly, IgA generated during a primary respiratory C. muridarum infection did not provide a significant amount of protection to secondary urogenital C. muridarum challenge. Together, these data suggest that IgA specific for an extracellular antigen (MOMP) can play a strong protective role in chlamydial infections, and that IgA targeting intracellular antigens is also effective but dependent on pIgR expression in tissues. However, whilst not investigated here, IgA targeting and blocking other intracellular chlamydial antigens, that are more essential for replication or type III secretion, may be more efficacious in subunit vaccines. Recently, studies have demonstrated that IgG can neutralize influenza virus by trafficking IgG-bound virus to lysosomes [4]. We sought to determine if this process could also traffic chlamydial antigens for degradation by lysosomes, despite Chlamydia spp. actively inhibiting fusion with the host endocytic pathway. As observed in pIgR-mediated delivery of anti-IncA IgA, FcRn similarly transported IgG specific for IncA which bound the inclusion membrane. Interestingly, FcRn-mediated delivery of anti-IncA IgG significantly decreased inclusion formation by 36 % (p < 0.01), and induced aberrant inclusion morphology. This suggests that unlike IgA, IgG can facilitate additional host cellular responses which affect the intracellular niche of chlamydial growth. Fluorescence microscopy revealed that IgG also bound the inclusion, but unlike influenza studies, did not induce the recruitment of lysosomes. Notably, anti-IncA IgG recruited sequestosomes to the inclusion membrane, markers of the ubiquitin/proteasome pathway and major histocompatibility complex (MHC) class I loading. To determine if the protection against C. muridarum infection afforded by IncA IgG in vitro translated in vivo, wild type mice and mice deficient in functional FcRn and MHC-I, were immunized, depleted of CD4+, and urogenitally infected with C. muridarum. Unlike in pIgR-deficient mice, the protection afforded from IncA immunization was completely abrogated in mice lacking functional FcRn and MHC-I/CD8+. Thus, both anti-IncA IgA and IgG can bind the inclusion in a pIgR and FcRn-mediated manner, respectively. However, only IgG mediates a higher reduction in chlamydial infection in vitro and in vivo suggesting more than steric blocking of IncA had occurred. Unlike anti-MOMP IgA, which reduced chlamydial infection of epithelial cells and male mouse tissues, IgG was found to enhance infectivity in vitro, and in vivo. Opsonization of EBs with MOMP-IgG enhanced inclusion formation of epithelial cells in a MOMP-IgG dose-dependent and FcRn-dependent manner. When MOMP-IgG opsonized EBs were inoculated into the vagina of female mice, a small but non-significant (p > 0.05) enhancement of cervicovaginal C. muridarum shedding was observed three days post infection in mice with functional FcRn. Interestingly, infection with opsonized EBs reduced the intensity of the peak of infection (day six) but protracted the duration of infection by 60 % in wild type mice only. Infection with EBs opsonized in IgG also significantly increased (p < 0.05) hydrosalpinx formation in the oviducts and induced lymphocyte infiltration uterine horns. As MOMP is an immunodominant antigen, and is widely used in vaccines, the ability of IgG specific to extracellular chlamydial antigens to enhance infection and induce pathology needs to be considered. Together, these data suggest that immunoglobulins play a dichotomous role in chlamydial infections, and are dependent on antigen specificity, FcRn and pIgR expression. FcRn was found to be highly expressed in upper male reproductive tract, whilst pIgR was dominantly expressed in the lower reproductive tract. Conversely, female mice expressed FcRn and pIgR in both the lower and upper reproductive tracts. In response to a normal chlamydial infection, pIgR is up-regulated increasing secretory IgA release, but FcRn is down-regulated preventing IgG uptake. Similarly to other studies [5-6], we demonstrate that IgA and IgG generated during primary chlamydial infections plays a minor role in recall immunity, and that antigen-specific subunit vaccines can offer more protection. We also show that both IgA and IgG can be used to target intracellular chlamydial antigens, but that IgG is more effective. Finally, IgA against the extracellular antigen MOMP can afford protection, whist IgG plays a deleterious role by increasing infectivity and inducing damaging immunopathology. Further investigations with additional antigens or combination subunit vaccines will enhance our understanding the protection afforded by antibodies against intracellular and extracellular pathogenic antigens, and help improve the development of an efficacious chlamydial vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES To determine whether the seroprevalence of antibodies to varicella zoster virus (VZV) in adults is similar to that reported in tropical populations elsewhere. METHODS We measured the seroprevalence of VZV IgG antibodies, using an enzyme immunoassay (EIA) in women attending an antenatal clinic in an urban centre in tropical Australia. RESULTS The overall seroprevalence of VZV antibodies in 298 women was 92% (95% CI 88-95), with no difference between women who spent their childhoods in the tropics and colleagues. None of the overseas-born women was seronegative. CONCLUSION The seroprevalence of VZV antibodies in this tropical population in Australia is as high as that reported from temperate regions, suggesting that social and cultural factors and population mobility are more important determinants of age distribution of VZV immunity than tropical climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early determination of immune status is essential for the prevention and/or amelioration of disease following exposure to chickenpox. This is of particular significance for pregnant women because of the additional risks to the foetus or newborn.1 To determine the usefulness of a self-reported history of chickenpox in adult women in the Top End, we compared it with serological evidence of immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short- and long-terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fibre-optic technologies, fibre Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, a methodology for measuring the vertical displacements of bridges using FBG sensors is proposed. The methodology includes two approaches. One of which is based on curvature measurements while the other utilises inclination measurements from successfully developed FBG tilt sensors. A series of simulation tests of a full-scale bridge was conducted. It shows that both approaches can be implemented to measure the vertical displacements for bridges with various support conditions, varying stiffness along the spans and without any prior known loading. A static loading beam test with increasing loads at the mid-span and a beam test with different loading locations were conducted to measure vertical displacements using FBG strain sensors and tilt sensors. The results show that the approaches can successfully measure vertical displacements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To identify a 15-KDa novel hypoxia-induced secreted protein in head and neck squamous cell carcinomas (HNSCC) and to determine its role in malignant progression. Methods: We used surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and tandem MS to identify a novel hypoxia-induced secreted protein in FaDu cells. We used immunoblots, real-time polymerase chain reaction (PCR), and enzyme-linked immunoabsorbent assay to confirm the hypoxic induction of this secreted protein as galectin-1 in cell lines and xenografts. We stained tumor tissues from 101 HNSCC patients for galectin-1, CA IX (carbonic anhydrase IX, a hypoxia marker) and CDS (a T-cell marker). Expression of these markers was correlated to each other and to treatment outcomes. Results: SELDI-TOF studies yielded a hypoxia-induced peak at 15 kDa that proved to be galectin-1 by MS analysis. Immunoblots and PCR studies confirmed increased galectin-1 expression by hypoxia in several cancer cell lines. Plasma levels of galectin-1 were higher in tumor-bearing severe combined immunodeficiency (SCID) mice breathing 10% O 2 compared with mice breathing room air. In HNSCC patients, there was a significant correlation between galectin-1 and CA IX staining (P = .01) and a strong inverse correlation between galectin-1 and CDS staining (P = .01). Expression of galectin-1 and CDS were significant predictors for overall survival on multivariate analysis. Conclusion: Galectin-1 is a novel hypoxia-regulated protein and a prognostic marker in HNSCC. This study presents a new mechanism on how hypoxia can affect the malignant progression and therapeutic response of solid tumors by regulating the secretion of proteins that modulate immune privilege. © 2005 by American Society of Clinical Oncology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several chronic infections known to be associated with malignancy have established oncogenic properties. However the existence of chronic inflammatory conditions that do not have an established infective cause and are associated with the development of tumours strongly suggests that the inflammatory process itself provides the prerequisite environment for the development of malignancy. This environment includes upregulation of mediators of the inflammatory response such as cyclo-oxygenase (COX)-2 leading to the production of inflammatory cytokines and prostaglandins which themselves may suppress cell mediated immune responses and promote angiogenesis. These factors may also impact on cell growth and survival signalling pathways resulting in induction of cell proliferation and inhibition of apoptosis. Furthermore, chronic inflammation may lead to the production of reactive oxygen species and metabolites such as malondialdehyde within the affected cells that may in turn induce DNA damage and mutations and, as a result, be carcinogenic. Here it is proposed that the conditions provided by a chronic inflammatory environment are so essential for the progression of the neoplastic process that therapeutic intervention aimed at inhibiting inflammation, reducing angiogenesis and stimulating cell mediated immune responses may have a major role in reducing the incidence of common cancers. © 2001 Cancer Research Campaign http://www.bjcancer.com.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have demonstrated that angiogenesis and suppressed cell- mediated immunity (CMI) play a central role in the pathogenesis of malignant disease facilitating tumour growth, invasion and metastasis. In the majority of tumours, the malignant process is preceded by a pathological condition or exposure to an irritant which itself is associated with the induction of angiogenesis and/or suppressed CMI. These include: cigarette smoking, chronic bronchitis and lung cancer; chronic oesophagitis and oesophageal cancer; chronic viral infections such as human papilloma virus and ano-genital cancers, chronic hepatitis B and C and hepatocellular carcinoma, and Epstein- Barr virus (EBV) and lymphomas; chronic inflammatory conditions such as Crohn's disease and ulcerative colitis and colorectal cancer; asbestos exposure and mesothelioma and excessive sunlight exposure/sunburn and malignant melanoma. Chronic exposure to growth factors (insulin-like growth factor-I in acromegaly), mutations in tumour suppressor genes (TP53 in Li Fraumeni syndrome) and long-term exposure to immunosuppressive agents (cyclosporin A) may also give rise to similar environments and are associated with the development of a range of solid tumours. The increased blood supply would facilitate the development and proliferation of an abnormal clone or clones of cells arising as the result of: (a) an inherited genetic abnormality; and/or (b) acquired somatic mutations, the latter due to local production and/or enhanced delivery of carcinogens and mutagenic growth factors. With progressive detrimental mutations and growth-induced tumour hypoxia, the transformed cell, to a lesser or greater extent, may amplify the angiogenic process and CMI suppression, thereby facilitating further tumour growth and metastasis. There is accumulating evidence that long-term treatment with cyclo-oxygenase inhibitors (aspirin and indomethacin), cytokines such as interferon-α, anti-oestrogens (tamoxifen and raloxifene) and captopril significantly reduces the incidence of solid tumours such as breast and colorectal cancer. These agents are anti-angiogenic and, in the case of aspirin, indomethacin and interferon-α have proven immunomodulatory effects. Collectively these observations indicate that angiogenesis and suppressed CMI play a central role in the development and progression of malignant disease. (C) 2000 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The link between chronic immune activation and tumorigenesis is well established. Compelling evidence has accumulated that histologic assessment of infiltration patterns of different host immune response components in non-small cell lung cancer specimens helps identify different prognostic patient subgroups. This review provides an overview of recent insights gained in the understanding of the role played by chronic inflammation in lung carcinogenesis. The usefulness of quantification of different populations of lymphocytes, natural killer cells, macrophages, and mast cells within the tumor microenvironment in non-small cell lung cancer is also discussed. In particular, the importance of assessment of inflammatory cell microlocalization within both the tumor islet and surrounding stromal components is emphasized. Copyright © 2010 by the International Association for the Study of Lung Cancer.