479 resultados para Illinois Building Commission
Resumo:
Financial Accounting: Building Accounting Knowledge is a new textbook written for the first financial accounting subject that a student majoring in accounting is required to study. Based on the successful introductory accounting textbook, 'Accounting: building business skills', this text will provide students and academics with a well written and accessible textbook on the principles of financial accounting, with ample illustrations and applications to business. The text maintains the balance between a 'user' and 'preparer' perspective effectively by integrating real financial information and business decision choices throughout the chapters. Through the use of real company information and financial statements students will quickly appreciate the use of accounting information. The textbook clearly outlines to students how accounting information communicates the financing, operating, and investing activities of a business. The text builds a strong conceptual understanding and develops skills in the application of accounting principles and techniques, providing students with a solid foundation for studying accounting.
Resumo:
Facility managers have to acquire, integrate, edit and update diverse facility information ranging from building elements & fabric data, operational costs, contract types, room allocation, logistics, maintenance, etc. With the advent of standardized Building Information Models (BIM) such as the Industry Foundation Classes (IFC) new opportunities are available for Facility Managers to manage their FM data. The usage of IFC supports data interoperability between different software systems including the use of operational data for facility management systems. Besides the re-use of building data, the Building Information Model can be used as an information framework for storing and retrieving FM related data. Currently several BIM driven FM systems are available including IFC compliant ones. These systems have the potential to not only manage primary data more effectively but also to offer practical systems for detailed monitoring, and analysis of facility performance that can underpin innovative and more cost effective management of complex facilities.
Resumo:
In recent years considerable effort has gone into quantifying the reuse and recycling potential of waste generated by residential construction. Unfortunately less information is available for the commercial refurbishment sector. It is hypothesised that significant economic and environmental benefit can be derived from closer monitoring of the commercial construction waste stream. With the aim of assessing these benefits, the authors are involved in ongoing case studies to record both current standard practice and the most effective means of improving the eco-efficiency of materials use in office building refurbishments. This paper focuses on the issues involved in developing methods for obtaining the necessary information on better waste management practices and establishing benchmark indicators. The need to create databases to establish benchmarks of waste minimisation best practice in commercial construction is stressed. Further research will monitor the delivery of case study projects and the levels of reuse and recycling achieved in directly quantifiable ways
Resumo:
Generally, major public funding is invested in civil infrastructure assets. The efficiency and comfort level of expected and actual living standards is largely dependant on the management strategies of these assets. Buildings are one of the major & vital assets, which need to be maintained primarily to ensure their functionality by effective & efficient delivery of services and to optimise economic benefits. In Australia, billions of dollars are spent annually managing and maintaining built assets. These assets make up the social and economic infrastructure, which facilitate the essential services to public and business. Buildings are one of the prime & fundamental assets, which need to be managed effectively and efficiently to ensure that related services are delivered economically and sustainably
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.
Resumo:
The adoption of e-business by Small and Medium Enterprises (SMEs) in construction lags from other service and product businesses within the building sector. This paper develops a model to facilitate the uptake of electronic business, especially in relation to SMEs within the Australian construction sector. Ebusiness is defined here as “the undertaking of business-related transactions, communications and information exchanges utilising electronic medium and environment”, the elicited model highlights significant changes needed including skills development, social, economic and cultural issues. The model highlights barriers for SMEs to migrate towards e-transactions, e-bidding, e-tendering and ecollaboration and provides learning and skills development components. The model is derived from case study fieldwork and is to inform diffusion and awareness models for best practice. Empirical techniques included ‘focus group’ interviews and one to one ‘interviews’. Data was transcribed and analysed using cluster analyses. Preliminary results reveal that current models for e-business adoption are not effective within the construction context as they have emerged from other service and product industries - such as retail or tourism. These generic models have largely ignored the nature of the construction industry, and some modifications appears to be required. This paper proposes an alternative adoption model which is more sensitive to the nature of the industry – particularly for e-business uptake in building SME’s.
Resumo:
This was a two-stage project to inform the Australian property and construction industry generally, and to provide the Australian Building Codes Board (ABCB) with information to allow it to determine whether or not sustainability requirements are necessary in the Future Building Code of Australia (BCA21). Research objectives included: examine overseas sustainability requirements for buildings and outline the reason why it is controlled and regulated in the particular country, state, principality etc. examine studies focusing on sustainability developments in buildings in Australia and overseas identify potential issues and implications associated with sustainable building requirements provide advice on whether provisions are necessary in the BCA21 to make buildings sustainable if the study determines there is a need for sustainability requirements in the BCA21, the study was to demonstrate the need to control and regulate along with the method to control and regulate. This research was broken down into two stages. Stage 1 was a literature review of international requirements as well as current thinking and practice for sustainable building developments. Stage 2 identified issues and implications of sustainability requirements for buildings and advice on whether provisions are necessary in the BCA21. This stage included workshops in all capital cities and involved key stakeholders, such as regulators, local government and representatives from key associations. This final report brings together the work of both stages, along with a searchable internet database of references and a series of nine key recommendations.
Resumo:
This paper presents a comparative study of primarily Australian (and limited international) practices and guidelines on Buildings Asset Management (BAM). The objective of this study was to identify potential gaps in current practices and potential areas of research for further improvement. The paper starts with an overview of BAM. Later sections cover current BAM practices and guidelines across different states of Australia; give a limited overview of international practices and concludes with the authors’ observations.
Resumo:
This paper provides an overview of a new framework for a design stage Building Environmental Assessment (BEA) tool and a discussion of strategic responses to existing tool issues and relative stakeholder requirements that lead to the development of this tool founded on new information and communication technology (ICT) related to developments in 3D CAD technology. After introducing the context of the BEA and some of their team’s new work the authors • Critique current BEA tool theory; • Review previous assessments of stakeholder needs; • Introduce a new framework applied to analyse such tools • Highlight and key results considering illustrative ICT capabilities and • Discuss their potential significance upon BEA tool stakeholders.
Resumo:
Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.
Resumo:
Manufacture, construction and use of buildings and building materials make a significant environmental impact internally (inside the building), locally (neighbourhood) and globally. Life cycle assessment (LCA) methodology is being applied for evaluating the environmental impact of building/or building materials. One of the major applications of LCA is to identify key issues of a product system from cradle to grave. Key issues identified in an LCA lead one to the right direction in assessing the environmental aspects of a product system and help to identify the areas for improvement of the environmental performance of a product as well. The purpose of this paper is to suggest two methods for identifying key issues using an integrated tool (LCADesign), which has been developed to provide a method of determining the best alternative for reducing environmental impacts from a building or building materials, and compare both methods in the case study. This paper assists the designers or marketers related to building or building materials in their decision making by giving information on activities or alternatives which are identified as key issues for environmental impacts.
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
For a sustainable building industry, not only should the environmental and economic indicators be evaluated but also the societal indicators for building. Current indicators can be in conflict with each other, thus decision making is difficult to clearly quantify and assess sustainability. For the sustainable building, the objectives of decreasing both adverse environmental impact and cost are in conflict. In addition, even though both objectives may be satisfied, building management systems may present other problems such as convenience of occupants, flexibility of building, or technical maintenance, which are difficult to quantify as exact assessment data. These conflicting problems confronting building managers or planners render building management more difficult. This paper presents a methodology to evaluate a sustainable building considering socio-economic and environmental characteristics of buildings, and is intended to assist the decision making for building planners or practitioners. The suggested methodology employs three main concepts: linguistic variables, fuzzy numbers, and an analytic hierarchy process. The linguistic variables are used to represent the degree of appropriateness of qualitative indicators, which are vague or uncertain. These linguistic variables are then translated into fuzzy numbers to reflect their uncertainties and aggregated into the final fuzzy decision value using a hierarchical structure. Through a case study, the suggested methodology is applied to the evaluation of a building. The result demonstrates that the suggested approach can be a useful tool for evaluating a building for sustainability.
Resumo:
Understanding the differences between the temporal and physical aspects of the building life cycle is an essential ingredient in the development of Building Environmental Assessment (BEA) tools. This paper illustrates a theoretical Life Cycle Assessment (LCA) framework aligning temporal decision-making with that of material flows over building development phases. It was derived during development of a prototype commercial building design tool that was based on a 3-D CAD information and communications technology (ICT) platform and LCA software. The framework aligns stakeholder BEA needs and the decision-making process against characteristics of leading green building tools. The paper explores related integration of BEA tool development applications on such ICT platforms. Key framework modules are depicted and practical examples for BEA are provided for: • Definition of investment and service goals at project initiation; • Design integrated to avoid overlaps/confusion over the project life cycle; • Detailing the supply chain considering building life cycle impacts; • Delivery of quality metrics for occupancy post-construction/handover; • Deconstruction profiling at end of life to facilitate recovery.