90 resultados para INFLUENZA A
Resumo:
Hyperthermia, raised temperature, has been used as a means of treating cancer for centuries. Hippocrates (400 BC) and Galen (200 BC) used red-hot irons to treat small tumours. Much later, after the Renaissance, there are many reports of spontaneous tumour regression in patients with fevers produced by erysipelas, malaria, smallpox, tuberculosis and influenza. These illnesses produce fevers of about 40 °C which last for several days. Temperatures of at least 40 °C were found to be necessary for tumour regression. Towards the end of the nineteenth century pyrogenic bacteria were injected into patients with cancer. In 1896, Coly used a mixture of erysipelas and B. prodigeosus, with some success...
Resumo:
This portrait of the global debate over patent law and access to essential medicines focuses on public health concerns about HIV/AIDS, malaria, tuberculosis, the SARS virus, influenza, and diseases of poverty. The essays explore the diplomatic negotiations and disputes in key international fora, such as the World Trade Organization, the World Health Organization and the World Intellectual Property Organization. Drawing upon international trade law, innovation policy, intellectual property law, health law, human rights and philosophy, the authors seek to canvass policy solutions which encourage and reward worthwhile pharmaceutical innovation while ensuring affordable access to advanced medicines. A number of creative policy options are critically assessed, including the development of a Health Impact Fund, prizes for medical innovation, the use of patent pools, open-source drug development and forms of 'creative capitalism'.
Resumo:
This article considers the race to sequence the Severe Acute Respiratory Syndrome virus ('the SARS virus') in light of the debate over patent law and access to essential medicines. Part II evaluates the claims of public research institutions in Canada, the United States, and Hong Kong, and commercial companies, to patent rights in respect of the SARS virus. It highlights the dilemma of ’defensive patenting' - the tension between securing private patent rights and facilitating public disclosure of information and research. Part III considers the race to patent the SARS virus in light of wider policy debates over gene patents. It examines the application of such patent criteria as novelty, inventive step, utility, and secret use. It contends that there is a need to reform the patent system to accommodate the global nature of scientific inquiry, the unique nature of genetics, and the pace of technological change. Part IV examines the role played by the World Trade Organization and the World Health Organization in dealing with patent law and access to essential medicines. The article contends that there is a need to ensure that the patent system is sufficiently flexible and adaptable to accommodate international research efforts on infectious diseases.
Resumo:
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. © 2013 Mechelli et al.
Resumo:
It is now 10 years since the disease we now know as SARS-severe acute respiratory syndrome-caused more than 700 deaths around the world and made more than 8,000 people ill. More recently, in 2009 the global community experienced the first influenza pandemic of the 21st century-the 2009 H1N1 influenza pandemic. This paper analyses the major developments in international public health law relating to infectious diseases in the period since SARS and considers their implications for pandemic planning.
Australia’s first Pharmacist Immunisation Pilot – who did pharmacists jab with a needle again? QPIP2
Resumo:
Introduction. The successful rollout of the Queensland Pharmacist Immunisation Pilot (QPIP1) led to expansion of the pilot into Phase 2 (QPIP2), which saw pharmacists being permitted to vaccinate adults for not only influenza, but also measles and pertussis in community pharmacies. The extremely positive results from QPIP1 paved the way for expanding the scope of pharmacists across Australia. Aims. The aim was to continue to investigate the benefits of trained pharmacists administering vaccinations in a community pharmacy setting. Methods. Participant demographics and previous influenza vaccination experiences were recorded using GuildCare software. Participants also completed a ‘post-vaccination satisfaction survey’ after receiving their vaccination. Results. To date, 22,467 influenza vaccines, 1441 pertussis and 22 measles vaccinations have been administered by pharmacists. Females accounted for 57% of the participants, with the majority of the participants aged between 46-65 years of age (51.2%). It was interesting to note that 18.9% of the participants were eligible to receive a free vaccination from the National Immunisation Program, but still opted to be vaccinated by a pharmacist in a community pharmacy setting. Participants reported a positive experience with the pharmacist vaccination service; reporting they were happy to receive vaccinations from a pharmacy in the future, and being happy to recommend the service to others. Discussion. The overwhelmingly positive uptake of this pharmacist vaccination service is demonstrated by a 100% increase in the number of influenza vaccines administered as part of QPIP1, and the ongoing positive feedback from patients. These findings will continue to pave the way for expanding the scope of practice for pharmacists across the country.
Resumo:
Background: The first phase of the Queensland Pharmacist Immunisation Pilot (QPIP) ran between April and August 2014, to pilot pharmacists administering influenza vaccinations for the flu season for the first time in Australia. Aim: An aim was to investigate factors facilitating implementation of a pharmacist vaccination service in the community pharmacy setting. Method: The QPIP pharmacies were divided into two arms; the South East Queensland arm consisting of 51 Terry White Chemists (TWCs), and 29 pharmacies in the North Queensland (NQ) arm. The TWCs featured pharmacies which previously provided a vaccination service and that were experienced with using an online booking system, providing an opportunity to capture booking data. Results: The TWCs delivered 9902 (90%) of the influenza vaccinations in QPIP. Of these, 48.5% of the vaccines were delivered via appointments made using the online booking system, while 13.3% were in-store bookings. Over one-third (38.2%) of the vaccinations delivered in were “walk-ins” where the vaccination was delivered ‘on the spot’ as spontaneous or opportunistic vaccinations. The absence of a booking system meant all vaccinations delivered in the NQ arm were “walk-ins”. The online-booking data showed 10:00 am and Tuesday being the most popular time and day for vaccinations. Patients preferred having their vaccinations in private consultation rooms, over areas which used a screen to partition off a private area. Discussion: The presence of an online booking system appeared to increase the efficiency and penetration of the of vaccine service delivery. Also, as the level of privacy afforded to patients increased, the number of patients vaccinated also increased. Conclusions: As pharmacist-delivered vaccination services start to progressively roll out across Australia; these findings pave the way for more efficient and effective implementation of the service.
Resumo:
Background: The Queensland Pharmacist Immunisation Pilot which ran in 2014 was Australia’s first to allow pharmacists to administer vaccinations. Aim: An aim of the pilot was to investigate the benefits of trained pharmacists administering vaccinations in a community pharmacy setting. Methods: Participant demographics and previous influenza vaccination experiences were recorded using GuildCare software. Participants also completed a ‘post-vaccination satisfaction survey’ following their influenza vaccination. Results: A total of 10889 participant records and 8737 satisfaction surveys were analysed. Overall, 1.9% of participants lived with a chronic illness, and 22.5% took concomitant medications. As part of the consultation before receiving the influenza vaccination, participants acknowledged the opportunity to discuss other aspects of their health with the pharmacist, including concerns about their general health, allergies, and other medications they were taking. It was worth noting that 17.5% of people would not have received an influenza vaccination if the pharmacist vaccination service was unavailable. Additionally, approximately 10% of all participants were eligible to receive a free vaccination from the National Immunisation Program, but still opted to receive their vaccine from a pharmacist. Conclusion: The findings from this pilot demonstrate the benefit of a pharmacist vaccination program in increasing vaccination rates, and have helped pave the way for expanding the scope of practice for pharmacists.
Resumo:
Background: In November 2013, the Queensland Department of Health announced its intention to pilot pharmacist vaccination for influenza in the 2014 flu season. The Pharmaceutical Society of Australia Queensland Branch was tasked with developing a training program for the pilot. Aim: The aim was to develop, implement and evaluate a training program for pharmacist vaccination relevant to the needs of Australian pharmacists. Method: Background content was delivered via two online modules, while training for practical injection skills and anaphylaxis management were provided in a face-to-face workshop. Participants were required to complete the Australasian Society of Clinical Immunology and Allergy (ASCIA) anaphylaxis e-training for pharmacists, and hold a current First-Aid and CPR certificate. On completion of the course, pharmacists were asked to evaluate the training program. Results: Overall, 157 pharmacists across Queensland completed the training. Participants rated the training highly on a 5-point Likert scale (>4.4 for all fields) for relevance to practice, comfort with the skill, confidence to do the task and relevance of the learning objectives to the training. Qualitative feedback indicated that a key component of the training was the ability to practice injections on each other. Conclusion: The findings demonstrate participants felt prepared for vaccination following completion of the training program, as reflected in the high level of confidence reported. A follow-up post-pilot will explore if this confidence was translated into practice during the implementation phase.
Resumo:
Background: The Queensland Pharmacist Immunisation Pilot which ran in 2014 was Australia’s first to allow pharmacists vaccination. Aim: The aim was to explore demographics of people vaccinated by a pharmacist, and their satisfaction with the service. Method: Demographics and previous influenza vaccination experiences were recorded using GuildCare software, and participants completed a ‘post-vaccination satisfaction survey’ after their influenza vaccination. Results: A total of 10889 participant records were analysed and >8000 participants completed the post-vaccination survey. Males accounted for 37% of participants, with the majority of participants aged between 45-64 years (53%). Overall, 49% of participants had been vaccinated before, the majority at a GP clinic (60%). Most participants reported receiving their previous influenza vaccination from a nurse (61%). Interestingly, 1% thought a pharmacist had administered their previous vaccination, while 7% were unsure who had administered it. It was also of note that approximately 10% of all participants were eligible to receive a free vaccination from the National Immunisation Program, but opted to receive their vaccine in a pharmacy. Overall, 95% were happy to receive their vaccination from a pharmacy in the future and 97% would recommend this service to other people. Conclusion: Participants were overwhelmingly positive in their response to the pharmacist vaccination pilot. These findings have helped pave the way for expanding the scope of practice for pharmacists with the aim to increase vaccination rates across the state.
Resumo:
Introduction: The Queensland Pharmacist Immunisation Pilot (QPIP) began in April 2014, and was Australia’s first to allow pharmacists vaccination. An aim of QPIP was to investigate participants’ satisfaction with the service, and their overall experience with the service. Method: Patient demographics and previous influenza vaccination experiences were recorded using GuildCare software. After receiving the influenza vaccine from the pharmacist, participants were asked to complete a ‘post-vaccination satisfaction questionnaire’. Results: A total of 10,889 participants received influenza vaccinations from a pharmacist, and >8000 participants completed the post-vaccination survey. Males accounted for 37% of participants, with the majority of participants aged between 45-64 years (53%). Almost half of the participants had been vaccinated before, the majority at a GP clinic (60%), and most participants reported receiving their previous influenza vaccination from a nurse (61%). Interestingly, 7% were unsure which healthcare professional had vaccinated them, and 1% thought a pharmacist had administered their previous vaccination. It was also noteworthy that approximately 10% of all participants were eligible to receive a free vaccination under the National Immunisation Program, but opted to receive their vaccine in a pharmacy. Overall, 95% were happy to receive their vaccination from a pharmacy in the future and 97% would recommend this service to other people. Conclusion: Participants were overwhelmingly positive in their response to the pharmacist vaccination pilot. These findings have paved the way for expanding the scope of practice for pharmacists with the aim to increase vaccination rates across the country. The pilot has now been expanded to include the administration of vaccinations for measles and pertussis.
Resumo:
Introduction/background/issues The Queensland Pharmacist Immunisation Pilot is Australia’s first to allow pharmacists vaccination. The pilot ran between April 1st 2014 and August 31st 2014, with pharmacists administering influenza vaccination during the flu season. The aim of this work was to investigate the benefits of trained registered pharmacists administering vaccinations in a community pharmacy setting. Methods Participant demographics and previous influenza vaccination experiences were recorded using GuildCare software. Participants also completed a ‘post-vaccination satisfaction survey’ following their influenza vaccination. Results/discussions A total of 10,889 participant records were analysed. Females accounted for 63% of participants, with the majority of participants aged between 45-64 years (53%). Overall, 49% of participants had been vaccinated before, the majority at a GP clinic (60%). Most participants reported receiving their previous influenza vaccination from a nurse (61%). Interestingly, 1% thought a pharmacist had administered their previous vaccination, while 7% were unsure which health professional had administered it. It was also of note that approximately 10% of all participants were eligible to receive a free vaccination from the National Immunisation Program, but still opted to receive their vaccine in a pharmacy. Over 8,000 participants took part in the post-vaccination survey, 93% were happy to receive their vaccination from a pharmacy in the future while 94% would recommend this service to other people. The remaining 7% and 6% respectively had omitted to fill in those questions. Conclusions/implications These findings have helped pave the way for expanding the scope of practice for pharmacists with the aim to increase vaccination rates across Australia. Key message • Scope of practice and ability for health providers like pharmacists to provide services such as vaccination in primary care. • New service delivery to improve access to service, and increase immunisation rates.
Resumo:
Background: The Queensland Pharmacist Immunisation Pilot (QPIP) which ran in 2014 was Australia’s first to allow pharmacists to administer vaccinations. An aim of QPIP was to investigate the benefits of trained pharmacists administering vaccinations in a community pharmacy setting. Methods: Participant demographics and previous influenza vaccination experiences were recorded using GuildCare software. Participants also completed a ‘post-vaccination satisfaction survey’ following their influenza vaccination. Results: A total of 10,889 participant records and 8,737 satisfaction surveys were analysed. Overall, 1.9% of the participants reported living with a chronic illness, and 22.5% were taking concomitant medications. As part of the consultation before receiving the vaccine, participants acknowledged the opportunity to discuss other aspects of their health with the pharmacist, including concerns about their general health, allergies, and other medications they were taking. It was worth noting that 17.5% of people would not have received an influenza vaccination if the QPIP service was unavailable. Additionally, approximately 10% of all participants were eligible to receive a free vaccination from the National Immunisation Program, but still opted to receive their vaccine from a pharmacist. Conclusion: The findings from this pilot demonstrate the benefit of a pharmacist vaccination program in increasing vaccination rates, and have helped pave the way for expanding the scope of practice for pharmacists.
Resumo:
Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.
Resumo:
From the moment Queensland's Chief Health Officer, Dr Jeannette Young, laid down the gauntlet to Queensland pharmacists kicking off the Queensland Pharmacists Immunisation Pilot (QPIP) for the 2014 influenza season, community pharmacy in Australia was never going to be the same.