207 resultados para II inhibitor
Resumo:
NICE guidelines have stated that patients undergoing elective hip surgery are at increased risk for venous thromboembolic events (VTE) following surgery and have recommended thromboprophylaxis for 28-35 days1, 2. However the studies looking at the new direct thrombin inhibitors have only looked at major bleeding. We prospectively looked at wound discharge in patients who underwent hip arthroplasty and were given dabigatran postoperatively between March 2010 and April 2010 (n=56). We retrospectively compared these results to a matched group of patients who underwent similar operations six months earlier when all patients were given dalteparin routinely postoperatively until discharge, and discharged home on 150mg aspirin daily for 6 weeks (n=67). Wound discharge after 5 days was significantly higher in the patients taking dabigatran (32% dabigatran n=18, 10% dalteparin n=17, p=0.003) and our rate of delayed discharges due to wound discharge significantly increased from 7% in the dalteparin group (n=5) to 27% for dabigatran (n=15, p=0.004). Patients who received dabigatran were more than five times as likely to return to theatre with a wound complication as those who received dalteparin (7% dabigatran n=4, vs. 1% dalteparin n=1), however, this was not statistically significant (p=0.18). The significantly higher wound discharge and return to theatre rates demonstrated in this study have meant that we have changed our practice to administering dalteparin until the wound is dry and then starting dabigatran. Our study demonstrates the need for further clinical studies regarding wound discharge and dabigatran.
Clusterin facilitates COMMD1 and I-kB degradation to enhance NF-kB activity in prostate cancer cells
Resumo:
Secretory clusterin (sCLU) is a stress-activated, cytoprotective chaperone that confers broad-spectrum cancer treatment resistance, and its targeted inhibitor (OGX-011) is currently in phase II trials for prostate, lung, and breast cancer. However, the molecular mechanisms by which sCLU inhibits treatment-induced apoptosis in prostate cancer remain incompletely defined. We report that sCLU increases NF-κB nuclear translocation and transcriptional activity by serving as a ubiquitin-binding protein that enhances COMMD1 and I-κB proteasomal degradation by interacting with members of the SCF-βTrCP E3 ligase family. Knockdown of sCLU in prostate cancer cells stabilizes COMMD1 and I-κB, thereby sequestrating NF-κB in the cytoplasm and decreasing NF-κB transcriptional activity. Comparative microarray profiling of sCLU-overexpressing and sCLU-knockdown prostate cancer cells confirmed that the expression of many NF-κB–regulated genes positively correlates with sCLU levels. We propose that elevated levels of sCLU promote prostate cancer cell survival by facilitating degradation of COMMD1 and I-κB, thereby activating the canonical NF-κB pathway.
Resumo:
This paper presents a road survey as part of a workshop conducted by the Texas Department of Transportation (TxDOT) to evaluate and improve the maintenance practices of the Texas highway system. Directors of maintenance from six peer states (California, Kansas, Georgia, Missouri, North Carolina, and Washington) were invited to this 3-day workshop. One of the important parts of this workshop was a Maintenance Test Section Survey (MTSS) to evaluate a number of pre-selected one-mile roadway sections. The workshop schedule allowed half a day to conduct the field survey and 34 sections were evaluated. Each of the evaluators was given a booklet and asked to rate the selected road sections. The goals of the MTSS were to: 1. Assess the threshold level at which maintenance activities are required as perceived by the evaluators from the peer states; 2. Assess the threshold level at which maintenance activities are required as perceived by evaluators from other TxDOT districts; and 3. Perform a pilot evaluation of the MTSS concept. This paper summarizes the information obtained from survey and discusses the major findings based on a statistical analysis of the data and comments from the survey participants.
Resumo:
Purpose: To measure renal adenosine triphosphate (ATP) (bioenergetics) during hypotensive sepsis with or without angiotensin II (Ang II) infusion. Methods: In anaesthetised sheep implanted with a renal artery flow probe and a magnetic resonance coil around one kidney, we induced hypotensive sepsis with intravenous Escherichia coli injection. We measured mean arterial pressure (MAP), heart rate, renal blood flow RBF and renal ATP levels using magnetic resonance spectroscopy. After 2 h of sepsis, we randomly assigned sheep to receive an infusion of Ang II or vehicle intravenously and studied the effect of treatment on the same variables. Results: After E. coli administration, the experimental animals developed hypotensive sepsis (MAP from 92 ± 9 at baseline to 58 ± 4 mmHg at 4 h). Initially, RBF increased, then, after 4 h, it decreased below control levels (from 175 ± 28 at baseline to 138 ± 27 mL/min). Despite decreased RBF and hypotension, renal ATP was unchanged (total ATP to inorganic phosphate ratio from 0.69 ± 0.02 to 0.70 ± 0.02). Ang II infusion restored MAP but caused significant renal vasoconstriction. However, it induced no changes in renal ATP (total ATP to inorganic phosphate ratio from 0.79 ± 0.03 to 0.80 ± 0.02). Conclusions:During early hypotensive experimental Gram-negative sepsis, there was no evidence of renal bioenergetic failure despite decreased RBF. In this setting, the addition of a powerful renal vasoconstrictor does not lead to deterioration in renal bioenergetics.
Resumo:
Prostate cancer (CaP) is the most commonly diagnosed cancer in males in Australia, North America, and Europe. If found early and locally confined, CaP can be treated with radical prostatectomy or radiation therapy; however, 25-40% patients will relapse and go on to advanced disease. The most common therapy in these cases is androgen deprivation therapy (ADT), which suppresses androgen production from the testis. Lack of the testicular androgen supply causes cells of the prostate to undergo apoptosis. However, in some cases the regression initially seen with ADT eventually gives way to a growth of a population of cancerous cells that no longer require testicular androgens. This phenotype is essentially fatal and is termed castrate resistant prostate cancer (CRPC). In addition to eventual regression, there are many undesirable side effects which accompany ADT, including development of a metabolic syndrome, which is defined by the U.S. National Library of Medicine as “a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.” This project will focus on the effect of ADT induced hyperinsulinemia, as mimicked by treating androgen receptor positive CaP cells with insulin in a serum (hormone) deprived environment. While this side effect is not widely explored, in this thesis it is demonstrated for the first time that insulin upregulates pathways important to CaP progression. Our group has previously shown that during CaP progression, the enzymes necessary for de novo steroidogenesis are upregulated in the LNCaP xenograft model, total steroid levels are increased in tumours compared to pre castrate levels, and de novo steroidogenesis from radio-labelled acetate has been demonstrated. Because of the CaP dependence on AR for survival, we and other groups believe that CaP cells carry out de novo steroidogenesis to survive in androgen deprived conditions. Because (a) men on ADT often develop metabolic syndrome, and (b) men with lifestyle-induced obesity and hyperinsulinemia have worse prognosis and faster disease progression, and because (c) insulin causes steroidogenesis in other cell lines, the hypothesis that insulin may contribute to CaP progression through upregulation of steroidogenesis was explored. Insulin upregulates steroidogenesis enzymes at the mRNA level in three AR positive cell lines, as well as upregulating these enzymes at the protein level in two cell lines. It has also been demonstrated that insulin increases mitochondrial (functional) levels of steroid acute regulatory protein (StAR). Furthermore, insulin causes increased levels of total steroids in and induction of de novo steroid synthesis by insulin has been demonstrated at levels induced sufficient to activate AR. The effect of insulin analogs on CaP steroidogenesis in LNCaP and VCaP cells has also been investigated because epidemiological studies suggest that some of the analogs developed may have more cancer stimulatory effects than normal insulin. In this project, despite the signalling differences between glargine, X10, and insulin, these analogs did not appear to induce steroidogenesis any more potently that normal insulin. The effect of insulin of MCF7breast cancer cells was also investigated with results suggesting that breast cancer cells may be capable of de novo steroidogenesis, and that increase in estradiol production may be exacerbated by insulin. Insulin has also been long known to stimulate lipogenesis in the liver and adipocytes, and has been demonstrated to increase lipogenesis in breast cancer cells; therefore, investigation of the effect of insulin on lipogenesis, which is a hallmark of aggressive cancers, was investigated. In CaP progression sterol regulatory element binding protein (SREBP) is dysregulated and upregulates fatty acid synthase (FASN), acetyl CoA-carboxylase, and other lipogenesis genes. SREBP is important for steroidogenesis and in this project has been shown to be upregulated by insulin in CaP cells. Fatty acid synthesis provides building blocks of membrane growth, provides substrates for acid oxidation, the main energy source for CaP cells, provides building blocks for anti-apoptotic and proinflammatory molecules, and provides molecules that stimulate steroidogenesis. In this project it has been shown that insulin upregulates FASN and ACC, which synthesize fatty acids, as well as upregulating hormone sensitive lipase (HSL), diazepam-binding inhibitor (DBI), and long-chain acyl-CoA synthetase 3 (ACSL3), which contribute to lipid activation of steroidogenesis. Insulin also upregulates total lipid levels and de novo lipogenesis, which can be suppressed by inhibition of the insulin receptor (INSR). The fatty acids synthesized after insulin treatment are those that have been associated with CaP; furthermore, microarray data suggests insulin may upregulate fatty acid biosynthesis, metabolism and arachidonic acid metabolism pathways, which have been implicated in CaP growth and survival. Pharmacological agents used to treat patients with hyperinsulinemia/ hyperlipidemia have gained much interest in regards to CaP risk and treatment; however, the scientific rationale behind these clinical applications has not been examined. This thesis explores whether the use of metformin or simvastatin would decrease either lipogenesis or steroidogenesis or both in CaP cells. Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor, which blocks synthesis of cholesterol, the building block of steroids/ androgens. It has also been postulated to down regulate SREBP in other metabolic disorders. It has been shown in this thesis, in LNCaP cells, that simvastatin inhibited and decreased insulin induced steroidogenesis and lipogenesis, respectively, but increased these pathways in the absence of insulin. Conversely, metformin, which activates AMP-activated protein kinase (AMPK) to shut down lipogenesis, cholesterol synthesis, and protein synthesis, highly suppresses both steroidogenesis and lipogenesis in the presence and absence of insulin. Lastly, because it has been demonstrated to increase steroidogenesis in other cell lines, and because the elucidation of any factors affecting steroidogenesis is important to understanding CaP, the effect of IGF2 on steroidogenesis in CaP cells was investigated. In patient samples, as men progress to CRPC, IGF2 mRNA and the protein levels of the receptors it may signal through are upregulated. It has also been demonstrated that IGF2 upregulates steroidogenic enzymes at both the mRNA and protein levels in LNCaP cells, increases intracellular and secreted steroid/androgen levels in LNCaPs to levels sufficient to stimulate the AR, and upregulated de novo steroidogenesis in LNCaPs and VCaPs. As well, inhibition of INSR and insulin-like growth factor 1 receptor (IGF1R), which IGF2 signals through, suggests that induction of steroidogenesis may be occurring predominantly through IGF1R. In summary, this project has illuminated for the first time that insulin is likely to play a large role in cancer progression, through upregulation of the steroidogenesis and lipogenesis pathways at the mRNA and protein levels, and production levels, and demonstrates a novel role for IGF-II in CaP progression through stimulation of steroidogenesis. It has also been demonstrated that metformin and simvastatin drugs may be useful in suppressing the insulin induction of these pathways. This project affirms the pathways by which ADT- induced metabolic syndrome may exacerbate CaP progression and strongly suggests that the monitoring and modulation of the metabolic state of CaP patients could have a strong impact on their therapeutic outcomes.
Resumo:
We examined the abundance and distribution of neutrophilic, microaerophilic Fe(II)-oxidizing bacteria (FeOB) in aquatic habitats of a highly weathered, subtropical coastal catchment where Fe biogeochemistry is of environmental significance. Laboratory cultivation and microscopy indicated that stalked Gallionella and sheathed Leptothrix-like FeOB were present in microbial mats associated with a circumneutral-pH, groundwater seep and streambank surface sediment,whereas unicellular FeOB werewidespread in surface and subsurface waters, including a seep, shallow stream and estuary-adjacent groundwater. Direct Gallionella-specificPCR detected dominant bacterial members related to Sideroxydans paludicola (95% sequence identity, SI) and Gallionella capsiferriformans (96% SI) in the seep microbialmat. TGGE analysis indicated that themost common FeOB in water enrichment cultures were related to S. lithotrophicus (96% SI). The ubiquity of FeOB in Poona catchment aquatic habitats suggests bacterial Fe(II) oxidation is integral to catchment Fe biogeochemistry.
Resumo:
We have previously reported the presence of a 70 kDa insulin-like growth factor (IGF)-II-specific binding protein in chicken serum using Western ligand blotting approaches. In order to ascertain the identity of this 70 kDa IGF-II binding species, the protein has been purified from chicken serum using a combination of ion-exchange and gel-permeation chromatography. Interestingly, amino acid sequencing of the purified protein revealed that it has the same N-terminal sequence as chicken vitronectin (VN). The protein has the ability to specifically bind IGF-II and not IGF-I as determined by ligand blotting, cross-linking and competitive binding assay approaches. In addition, the protein binds 125I-des(l-6)-IGF-II, suggesting that the interaction with IGF-II is different to those with other characterized IGF-binding proteins. Importantly, we have ascertained that both human and bovine VN also specifically bind IGF-II. These results are particularly relevant in the light of the recent report that the urokinase-type plasminogen activator receptor, a protein that also binds VN, has been shown to associate with the cation-independent mannose-6-phosphate/GF-II receptor and suggest a possible role for IGF-II in cell adhesion and invasion.
Resumo:
We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.
Resumo:
Background: The regulation of plasminogen activation is a key element in controlling proteolytic events in the extracellular matrix. Our previous studies had demonstrated that in inflamed gingival tissues, tissue-type plasminogen activator (t-PA) is significantly increased in the extracellular matrix of the connective tissue and that interleukin 1β (IL-1β) can up regulate the level of t-PA and plasminogen activator inhibitor-2 (PAI-2) synthesis by human gingival fibroblasts. Method: In the present study, the levels of t-PA and PAI-2 in gingival crevicular fluid (GCF) were measured from healthy, gingivitis and periodontitis sites and compared before and after periodontal treatment. Crevicular fluid from106 periodontal sites in 33 patients were collected. 24 sites from 11 periodontitis patients received periodontal treatment after the first sample collection and post-treatment samples were collected 14 days after treatment. All samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for t-PA and PAI-2. Results: The results showed that significantly high levels of t-PA and PAI-2 in GCF were found in the gingivitis and periodontitis sites. Periodontal treatment led to significant decreases of PAI-2, but not t-PA, after 14 days. A significant positive linear correlation was found between t-PA and PAI-2 in GCF (r=0.80, p<0.01). In the healthy group, different sites from within the same subject showed little variation of t-PA and PAI-2 in GCF. However, the gingivitis and periodontitis sites showed large variation. These results suggest a good correlation between t-PA and PAI-2 with the severity of periodontal conditions. Conclusion: This study indicates that t-PA and PAI-2 may play a significant rôle in the periodontal tissue destruction and tissue remodeling and that t-PA and PAI-2 in GCF may be used as clinical markers to evaluate the periodontal diseases and assess treatment.
Resumo:
Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis.
Resumo:
Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.
Resumo:
Study Rationale The objective of the study was to explore if and how rural culture influences type II diabetes management and to better understand the social processes that rural people construct in coping with diabetes and its complications. In particular, the study aimed to analyse the interface and interactions between rural people with type II diabetes and the Australian health care system. Theoretical framework and methods The research applied constructivist grounded theory methods within an interpretive interactionist framework. Data from 39 semi-structured interviews with rural and urban people with type II diabetes plus a mix of rural health care providers were analysed to develop a theoretical understanding of the social processes that define diabetes management in that context. Results The analysis suggests that although type II diabetes imposes limitations that require adjustment and adaptation these processes are actively negotiated by rural people within the environmental context to fit the salient social understandings of autonomy and self-reliance. Thus people normalised self-reliant diabetes management behaviours because this was congruent with the rural culture. Factors that informed the actions of normalisation were the relationships between participants and health care professions, support and access to individual resources. Conclusions The findings point to ways in which rural self-reliance is conceived as the primary strategy of diabetic management. People face the paradox of engaging with a health care system that at the same time maximises individual responsibility for health and minimises the social support by which individuals manage the condition. The emphasis on self-reliance gives some legitimacy to a lack of prevention and chronic care services. Success of diabetic management behaviours is contingent on relative resources. Where there is good primary care there develop a number of downstream effects including a sense of empowerment to manage difficult rural environmental circumstances. This has particular bearing on health outcomes for people with fewer resources.