565 resultados para Human engineering.
Resumo:
Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.
Resumo:
Aim: Electrospun nanofibers represent potent guidance substrates for nervous tissue repair. Development of nanofiber-based scaffolds for CNS repair requires, as a first step, an understanding of appropriate neural cell type-substrate interactions. Materials & methods: Astrocyte–nanofiber interactions (e.g., adhesion, proliferation, process extension and migration) were studied by comparing human neural progenitor-derived astrocytes (hNP-ACs) and a human astrocytoma cell line (U373) with aligned polycaprolactone (PCL) nanofibers or blended (25% type I collagen/75% PCL) nanofibers. Neuron–nanofiber interactions were assessed using a differentiated human neuroblastoma cell line (SH-SY5Y). Results & discussion: U373 cells and hNP-AC showed similar process alignment and length when associated with PCL or Type I collagen/PCL nanofibers. Cell adhesion and migration by hNP-AC were clearly improved by functionalization of nanofiber surfaces with type I collagen. Functionalized nanofibers had no such effect on U373 cells. Another clear difference between the U373 cells and hNP-AC interactions with the nanofiber substrate was proliferation; the cell line demonstrating strong proliferation, whereas the hNP-AC line showed no proliferation on either type of nanofiber. Long axonal growth (up to 600 µm in length) of SH-SY5Y neurons followed the orientation of both types of nanofibers even though adhesion of the processes to the fibers was poor. Conclusion: The use of cell lines is of only limited predictive value when studying cell–substrate interactions but both morphology and alignment of human astrocytes were affected profoundly by nanofibers. Nanofiber surface functionalization with collagen significantly improved hNP-AC adhesion and migration. Alternative forms of functionalization may be required for optimal axon–nanofiber interactions.
Resumo:
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.
Resumo:
Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.
Resumo:
Currently, well established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, their application, however, is associated with disadvantages. These include limited access and availability, donor site morbidity and haemorrhage, increased risk of infection, and insufficient transplant integration. As a result, recent research focuses on the development of complementary therapeutic concepts. The field of tissue engineering has emerged as an important alternative approach to bone regeneration. Tissue engineering unites aspects of cellular biology, biomechanical engineering, biomaterial sciences and trauma and orthopaedic surgery. To obtain approval by regulatory bodies for these novel therapeutic concepts the level of therapeutic benefit must be demonstrated rigorously in well characterized, clinically relevant animal models. Therefore, in this PhD project, a reproducible and clinically relevant, ovine, critically sized, high load bearing, tibial defect model was established and characterized as a prerequisite to assess the regenerative potential of a novel treatment concept in vivo involving a medical grade polycaprolactone and tricalciumphosphate based composite scaffold and recombinant human bone morphogenetic proteins.
Resumo:
The formation of a venture relies, in part, upon the participants reaching a shared understanding of purpose and process. Yet in circumstances of great complexity and uncertainty how can such a shared understanding be created? If the response to complexity and uncertainty is to seek simplicity in order to find commonality then what is lost and what is at risk? Can shared understandings of purpose and process be arrived at by embracing complexity and uncertainty and if so how? These questions led us to explore the process of dialogue and communication of a team in its formative stages. Our interests were not centred upon the behavioural characteristics of the individuals in the 'forming' stage of group dynamics but rather the process of cognitive and linguistic turns, the wax and wan of ideas and, the formation of shared meaning. This process of cognitive and linguistic turns was focused thematically on the areas of foresight, innovation, entrepreneurship, and public policy. This cross disciplinary exploration sought to explore potential synergies between these domains, in particular in developing a conceptual basis for long term thinking that can inform wiser public policy.
Resumo:
With a focus on understanding the overall effect of DFM on human factors aspects, DFM/DFA literature was systematically searched, reviewed and critically assessed. The influence of DFM on work organization is analysed using examples from literature, with the aim of quantifying consequences on work performance, job satisfaction and human work load where possible. It is also shown that job enlargement through DFM tasks increases the workload for the Product Designer, who is on the critical path of the engineering process. Without taking measures to counterbalance this higher workload of the Product Designer, DFM projects in complex engineering environments are likely to fail.
Resumo:
In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.
Resumo:
Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.
Resumo:
Articular cartilage is organized in depth zones with phenotypically distinct subpopulations of chondrocytes that are exposed to different oxygen tensions. Despite growing evidence of the critical role for oxygen in chondrogenesis, little is known about its effect on chondrocytes from different zones. This study evaluates zonal marker expression of human articular chondrocytes from different zones under various oxygen tensions. Chondrocytes isolated from full-thickness, superficial, and middle/deep cartilage from knee replacement surgeries were expanded and redifferentiated under hypoxic (5% O 2) or normoxic (20% O 2) conditions. Differentiation under hypoxia increased expression of hypoxia-inducible factors 1alpha and 2alpha and accumulation of extracellular matrix, particularly in middle/deep chondrocytes, and favored re-expression of proteoglycan 4 by superficial chondrocytes compared with middle/deep cells. Zone-dependent expression of clusterin varied with culture duration. These results demonstrate that zonal chondrocytes retain important phenotypic differences during in vitro cultivation, and that these characteristics can be improved by altering the oxygen environment. However, transcript levels for pleiotrophin, cartilage intermediate layer protein, and collagen type X were similar between zones, challenging their reliability as zonal markers for tissue-engineered cartilage from osteoarthritis patients. Key factors including oxygen tension and cell source should be considered to prescribe zone-specific properties to tissue-engineered cartilage. © 2012, Mary Ann Liebert, Inc.
Resumo:
Strontium (Sr), Zinc (Zn), magnesium (Mg), and silicon (Si) are reported to be essential trace elements for the growth and mineralization of bone. We speculated that the combination of these bioactive elements in bioceramics may be effective to regulate the osteogenic property of boneforming cells. In this study, two Sr-containing silicate bioceramics, Sr2ZnSi2O7 (SZS) and Sr2MgSi2O7 (SMS), were prepared. The biological response of human bone marrow mesenchymal stem cells (BMSCs) to the two bioceramics (in the forms of powders and dense ceramic bulks) was systematically studied. In powder form, the effect of powder extracts on the viability and alkaline phosphatase (ALP) activity of BMSCs was investigated. In ceramic disc form, both direct and indirect coculture of BMSCs with ceramic discs were used to investigate their biological response, including attachment, proliferation, ALP activity, and bone-related genes expression. Beta-tricalcium phosphate (b-TCP) and akermanite (Ca2MgSi2O7, CMS) were used as control materials. The results showed that the Sr, Zn, and Si (or Sr, Mg, and Si)-containing ionic products from SZS and SMS powders enhanced ALP activity of BMSCs, compared to those from b-TCP. Both SZS and SMS ceramic discs supported the growth of BMSCs, and most importantly, significantly enhanced the ALP activity and bone-related genes expression of BMSCs as compared to b-TCP. The results suggest that the specific combination of bioactive ions (Sr, Zn, Si, e.g.) in bioceramics is a viable way to improve the biological performance of biomaterials, and the form of materials and surface properties were nonnegligible factors to influence cell response.