85 resultados para Huber, Elena F.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular polysaccharides are as structurally and functionally diverse as the bacteria that synthesise them. They can be present in many forms, including cell-bound capsular polysaccharides, unbound "slime", and as O-antigen component of lipopolysaccharide, with an equally wide range of biological functions. These include resistance to desiccation, protection against nonspecific and specific host immunity, and adherence. Unsurprisingly then, much effort has been made to catalogue the enormous structural complexity of the extracellular polysaccharides made possible by the wide assortment of available monosaccharide combinations, non-carbohydrate residues, and linkage types, and to elucidate their biosynthesis and export. In addition, the work is driven by the commercial potential of these microbial substances in food, pharmaceutics and biomedical industries. Most recently, bacteria-mediated environmental restoration and bioleaching have been attracting much attention owing to their potential to remediate environmental effluents produced by the mining and metallurgy industries. In spite of technological advances in chemistry, molecular biology and imaging techniques that allowed for considerable expansion of knowledge pertaining to the bacterial surface polysaccharides, current understanding of the mechanisms of synthesis and regulation of extracellular polysaccharides is yet to fully explain their structural intricacy and functional variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma polymerisation was used to deposit thin oligomeric films of terpinen-4-ol on a range of substrates. The coatings were examined in terms of their chemical properties and surface architecture to ascertain the changes in chemical composition as a result of exposure to the plasma field. The antifouling and antimicrobial activity of oligomeric terpinen-4-ol coatings were then examined against such human pathogens as Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermis. The bacterial adhesion patterns were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terpinen-4-ol is the main constituent of Melaleuca alternifolia essential oil known for its biocidal and anti-inflammatory properties. The possibility of fabricating polymer thin films from terpinen-4-ol using radio frequency (RF) plasma polymerisation for the prevention of the growth of Pseudomonas aeruginosa was investigated, and the properties of the resultant films compared against their biologically active precursor. Films fabricated at 10 W prevented bacterial attachment and EPS secretion, whilst polyterpenol films deposited at 25 W demonstrated no biocidal activity against the pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superhydrophobic polymers are particularly attractive materials, as they combine low cost, ease of processing, and compatibility with a variety of applications. Surfaces that display the Cassie–Baxter wetting state are particularly attractive for their self-cleaning properties. In this chapter, a brief overview of the wetting principles will be followed by an account of several techniques currently used to impart superhydrophobicity onto polymer surfaces. Surface roughness and surface structure will be the focus of this chapter, with an emphasis on topographies that exhibit microscale or nanoscale features arranged in hierarchical order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rising demand for medical implants for ageing populations and ongoing advancements in medical technology continue to drive the use of implantable devices. Higher implant usage has a consequent increased incidence of implant-related infections, and associated prolonged patient care, pain and loss of limb and other organ function. Numerous antibacterial surfaces have been designed that prevent the onset of biofilm formation, thus reducing or preventing implant-associated infections through inhibiting bacterial adhesion or by killing the organisms that successfully attach to the surface of the implant. Other surfaces have been designed to stimulate a local immune response, promoting the natural clearing of the invading pathogen. The desired antibacterial effects are typically achieved by modulating the surface chemistry and morphology of the implant material, by means of the controlled release of pharmacological agents and bioactive compounds from the surface of the material, or by a combination of both processes. An important issue for any type of antibacterial surface modification lies in balancing the non-fouling, bacteriostatic or bactericidal effects against local and systemic biocompatibility. In this chapter, we will first describe the concept of biocompatibility and its evolution, from devices that do not evoke a negative host response to those that actively drive host regeneration. We will then review the challenges associated with merging the need for an implant material to withstand a bacterial load with those associated with supporting function restoration and tissue healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prospective studies and intervention evaluations that examine change over time assume that measurement tools measure the same construct at each occasion. In the area of parent-child feeding practices, longitudinal measurement properties of the questionnaires used are rarely verified. To ascertain that measured change in feeding practices reflects true change rather than change in the assessment, structure, or conceptualisation of the constructs over time, this study examined longitudinal measurement invariance of the Feeding Practices and Structure Questionnaire (FPSQ) subscales (9 constructs; 40 items) across 3 time points. Mothers participating in the NOURISH trial reported their feeding practices when children were aged 2, 3.7, and 5 years (N = 404). Confirmatory Factor Analysis (CFA) within a structural equation modelling framework was used. Comparisons of initial cross-sectional models followed by longitudinal modelling of subscales, resulted in the removal of 12 items, including two redundant or poorly performing subscales. The resulting 28-item FPSQ-28 comprised 7 multi-item subscales: Reward for Behaviour, Reward for Eating, Persuasive Feeding, Overt Restriction, Covert Restriction, Structured Meal Setting and Structured Meal Timing. All subscales showed good fit over 3 time points and each displayed at least partial scalar (thresholds equal) longitudinal measurement invariance. We recommend the use of a separate single item indicator to assess the family meal setting. This is the first study to examine longitudinal measurement invariance in a feeding practices questionnaire. Invariance was established, indicating that the subscales of the shortened FPSQ-28 can be used with mothers to validly assess change in 7 feeding constructs in samples of children aged 2-5 years of age.