137 resultados para Helicobacter pylori genotypes
Resumo:
The Yd2 gene for “resistance” to barley yellow dwarf virus (BYDV) has been widely used in barley (Hordeum vulgare). We have tested Australian isolates of BYDV of varying severity against barley genotypes with and without the Yd2 gene and report here a positive relationship between symptoms and virus levels determined by ELISA. Cultivar Shannon is the result of backcrossing the resistant line CI 3208 to cultivar Proctor, a susceptible line. It appears to be intermediate in reaction to BYDV between Proctor and CI 3208, although it carries the major gene, Yd2. Unlike the whole plant studies, no significant differences were observed with regard to the ability of protoplasts derived from these various genotypes to support BYDV replication. It is therefore demonstrated for the first time that the Yd2 gene is not among the small number of resistance genes which are effective against virus replication in isolated protoplasts.
Resumo:
The last four decades have seen a significant increase in the incidence of non-Hodgkin's lymphoma (NHL) as a possible result of increasing environmental carcinogen exposure, particularly pesticides and solvents. Based on the increasing evidence for an association between carcinogen exposure-related cancer risk and xenobiotic gene polymorphisms, we have undertaken a case-control study of xenobiotic gene polymorphisms in individuals with a diagnosis of NHL. Polymorphisms of six xenobiotic genes (CYP1A1, GSTT1, GSTM1, PON1, NAT1, NAT2) were characterized in 169 individuals with NHL and 205 normal controls using polymerase chain reaction-based methods. Polymorphic frequencies were compared using Fisher's exact tests, and odds ratios for NHL risk were calculated. Among the NHL group, the incidence of GSTT1 null and PON1 BB genotypes were significantly increased compared with controls, 34% vs 14%, and 24% vs 11% respectively. Adjusted odds ratios calculated from multivariate analyses demonstrated that GSTT1 null conferred a fourfold increase in NHL risk (OR = 4.27; 95% CI, 2.40-7.61, P < 0.001) and PON1 BB a 2.9-fold increase (OR = 2.92; 95% CI, 1.49-5.72, P = 0.002). Furthermore, GSTT1 null combined with PON1 BB or GSTM1 null conferred an additional risk of NHL. This is the first time that a PON1 gene polymorphism has been shown to be associated with cancer risk. We conclude that the two polymorphisms, GSTT1 null and PON1 BB, are common genetic traits that pose low individual risk but may be important determinants of overall population NHL risk, particularly among groups exposed to NHL-related carcinogens.
Resumo:
Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.
Resumo:
Histological analysis of gill samples taken from individuals of Latris lineata reared in aquaculture in Tasmania, Australia, and those sampled from the wild revealed the presence of epitheliocystis-like basophilic inclusions. Subsequent morphological, in situ hybridization, and molecular analyses were performed to confirm the presence of this disease and discovered a Chlamydia-like organism associated with this condition, and the criteria set by Fredericks and Relman's postulates were used to establish disease causation. Three distinct 16S rRNA genotypes were sequenced from 16 fish, and phylogenetic analyses of the nearly full-length 16S rRNA sequences generated for this bacterial agent indicated that they were nearly identical novel members of the order Chlamydiales. This new taxon formed a well-supported clade with "Candidatus Parilichlamydia carangidicola" from the yellowtail kingfish (Seriola lalandi). On the basis of sequence divergence over the 16S rRNA region relative to all other members of the order Chlamydiales, a new genus and species are proposed here for the Chlamydia-like bacterium from L. lineata, i.e., "Candidatus Similichlamydia latridicola" gen. nov., sp. nov.
Resumo:
Background Migraine is a brain disorder affecting ∼12% of the Caucasian population. Genes involved in neurological, vascular, and hormonal pathways have all been implicated in predisposing individuals to developing migraine. The migraineur presents with disabling head pain and varying symptoms of nausea, emesis, photophobia, phonophobia, and occasionally visual sensory disturbances. Biochemical and genetic studies have demonstrated dysfunction of neurotransmitters: serotonin, dopamine, and glutamate in migraine susceptibility. Glutamate mediates the transmission of excitatory signals in the mammalian central nervous system that affect normal brain function including cognition, memory and learning. The aim of this study was to investigate polymorphisms in the GRIA2 and GRIA4 genes, which encode subunits of the ionotropic AMPA receptor for association in an Australian Caucasian population. Methods Genotypes for each polymorphism were determined using high resolution melt analysis and the RFLP method. Results Statistical analysis showed no association between migraine and the GRIA2 and GRIA4 polymorphisms investigated. Conclusions Although the results of this study showed no significant association between the tested GRIA gene variants and migraine in our Australian Caucasian population further investigation of other components of the glutamatergic system may help to elucidate if there is a relationship between glutamatergic dysfunction and migraine.
Resumo:
Background: Recent evidence indicates that gene variants related to carotenoid metabolism play a role in the uptake of macular pigments lutein (L) and zeaxanthine (Z). Moreover, these pigments are proposed to reduce the risk for advanced age-related macular degeneration (AMD). This study provides the initial examination of the relationship between the gene variants related to carotenoid metabolism, macular pigment optical density (MPOD) and their combined expression in healthy humans and patients with AMD. Participants and Methods: Forty-four participants were enrolled from a general population and a private practice including 20 healthy participants and 24 patients with advanced (neovascular) AMD. Participants were genotyped for the three single nucleotide polymorphisms (SNPs) upstream from BCMO1, rs11645428, rs6420424 and rs6564851 that have been shown to either up or down regulate beta-carotene conversion efficiency in the plasma. MPOD was determined by heterochromatic flicker photometry. Results: Healthy participants with the rs11645428 GG genotype, rs6420424 AA genotype and rs6564851 GG genotype all had on average significantly lower MPOD compared to those with the other genotypes (p < 0.01 for all three comparisons). When combining BCMO1 genotypes reported to have “high” (rs11645428 AA/rs6420424 GG/rs6564851 TT) and “low” (rs11645428 GG/rs6420424 AA/rs6564851 GG) beta-carotene conversion efficiency, we demonstrate clear differences in MPOD values (p<0.01). In patients with AMD there were no significant differences in MPOD for any of the three BCMO1 gene variants. Conclusion: In healthy participants MPOD levels can be related to high and low beta-carotene conversion BCMO1 genotypes. Such relationships were not found in patients with advanced neovascular AMD, indicative of additional processes influencing carotenoid uptake, possibly related to other AMD susceptibility genes. Our findings indicate that specific BCMO1 SNPs should be determined when assessing the effects of carotenoid supplementation on macular pigment and that their expression may be influenced by retinal disease.
Resumo:
Background Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour. Results Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals. A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia. The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays. Conclusions The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits.
Resumo:
We show, using the PDR1 element of pea, that dispersed repeated sequences of moderate copy number can be used simply and efficiently to generate markers linked to a trait of interest. Inspection of hybridization patterns of repeated sequences to DNA mixtures of pooled genotypes is a sensitive way of detecting such markers. The large number of bands in tracks of digests of these mixtures allows the simultaneous sampling of loci at many places in the genome, and the many unlinked loci serve as internal controls. It is also shown that intensity ratios calculated from these band differences can be used to give a rough estimate of linkage distance.
Resumo:
Much of the diversity of anthocyanins is due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. We identified two glycosyltransferases, F3GT1 and F3GGT1, from red-fleshed kiwifruit (Actinidia chinensis) that perform sequential glycosylation steps. Red-fleshed genotypes of kiwifruit accumulate anthocyanins mainly in the form of cyanidin 3-O-xylo-galactoside. Genes in the anthocyanin and flavonoid biosynthetic pathway were identified and shown to be expressed in fruit tissue. However, only the expression of the glycosyltransferase F3GT1 was correlated with anthocyanin accumulation in red tissues. Recombinant enzyme assays in vitro and in vivo RNA interference (RNAi) demonstrated the role of F3GT1 in the production of cyanidin 3-O-galactoside. F3GGT1 was shown to further glycosylate the sugar moiety of the anthocyanins. This second glycosylation can affect the solubility and stability of the pigments and modify their colour. We show that recombinant F3GGT1 can catalyse the addition of UDP-xylose to cyanidin 3-galactoside. While F3GGT1 is responsible for the end-product of the pathway, F3GT1 is likely to be the key enzyme regulating the accumulation of anthocyanin in red-fleshed kiwifruit varieties.
Resumo:
A trypsin inhibitor locus (Tri) has been mapped close to Vc-2 on Pisum (pea) linkage group 5 using recombinant inbred lines derived from crosses of genotypes showing qualitative variation in seed trypsin inhibitors. F2 seed populations derived from crosses between lines showing qualitative variation in trypsin inhibitors as well as quantitative variation in inhibitor activity showed an association between the segregation of the structural variation and relative activity levels. Clones complementary to Pisum trypsin inhibitor mRNA were used in hybridization analyses which showed that the segregation of protein polymorphisms reflected directly the segregation of polymorphisms associated with the structural genes.
Resumo:
A cDNA encoding the chloroplast/mitochondrial form of glutathione reductase (GR:EC 1,6,4,2) from pea (Pisum sativum L.) was used to map a single GR locus, named GORI. In two domesticated genotypes of pea (cv, Birte and JI 399) it is likely that the GORI locus contains a single gene. However, in a semi-domesticated land race of pea sequences were detected but closely related sets of GR gene sequences were in JI 281 represent either a second intact gene or a partial or pseudogene copy. A GR gene was cloned from ev. Birte, sequenced and its structure analysed. No features of the transcription or structure of the gene suggested a mechanism for generating any more than one form of . From these data plus previously published biochemical evidence was suggested a second, distinct gene encoding for the cytosolic form of GR should be present in peas. The GORI-encoded GR mRNA can be detected in all main organs of the plant and no alternative spliced species was present which could perhaps account for the generation of multiple isoforms of GR. The mismatch between the number of charge-separable isoforms in pea and the proposed number suggests that different GR isoforms arise by some form of post-transnational modification.
Resumo:
The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening. In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental stages identified Actinidia lycopene beta-cyclase (LCY-β) as the gene whose expression pattern appeared to be associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase (CRH-β), and epsilon carotene hydroxylase (CRH-ε) showed some variation in gene expression. The LCY-β gene was functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit species, appears to be controlled by the level of expression of LCY-β gene.
Resumo:
Mortality in breast cancer is linked to metastasis and recurrence yet there is no acceptable biological model for cancer relapse. We hypothesise that there might exist primary tumour cells capable of escaping surgery by migration and resisting radiotherapy and chemotherapy to cause cancer recurrence. We investigated this possibility in invasive ductal carcinoma (IDC) tissue and observed the presence of solitary primary tumour cells (SPCs) in the dense collagen stroma that encapsulates intratumoural cells (ICs). In IDC tissue sections, collagen was detected with either Masson's Trichrome or by second harmonics imaging. Cytokeratin-19 (CK-19) and vimentin (VIM) antibodies were, respectively, used to identify epithelial-derived tumour cells and to indicate epithelial to mesenchymal transition (EMT). Confocal/multiphoton microscopy showed that ICs from acini were mainly CK-19 +ve and were encapsulated by dense stromal collagen. Within the stroma, SPCs were detected by their staining for both CK-19 and VIM (confirming EMT). ICs and SPCs were subsequently isolated by laser capture microdissection followed by multiplex tandem-PCR studies. SPCs were found to be enriched for pro-migratory and anti-proliferative genes relative to ICs. In vitro experiments using collagen matrices at 20 mg/cm 3, similar in density to tumour matrices, demonstrated that SPC-like cells were highly migratory but dormant, phenotypes that recapitulated the genotypes of SPCs in clinical tissue. These data suggest that SPCs located at the breast cancer perimeter are invasive and dormant such that they may exceed surgical margins and resist local and adjuvant therapies. This study has important connotations for a role of SPCs in local recurrence.
Resumo:
Objective To investigate the role of matrix metalloproteinase 13 (MMP-13; collagenase 3) in osteoarthritis (OA). Methods OA was surgically induced in the knees of MMP-13-knockout mice and wild-type mice, and mice were compared. Histologic scoring of femoral and tibial cartilage aggrecan loss (0-3 scale), erosion (0-7 scale), and chondrocyte hypertrophy (0-1 scale), as well as osteophyte size (0-3 scale) and maturity (0-3 scale) was performed. Serial sections were stained for type X collagen and the MMP-generated aggrecan neoepitope DIPEN. Results Following surgery, aggrecan loss and cartilage erosion were more severe in the tibia than femur (P < 0.01) and tibial cartilage erosion increased with time (P < 0.05) in wild-type mice. Cartilaginous osteophytes were present at 4 weeks and underwent ossification, with size and maturity increasing by 8 weeks (P < 0.01). There was no difference between genotypes in aggrecan loss or cartilage erosion at 4 weeks. There was less tibial cartilage erosion in knockout mice than in wild-type mice at 8 weeks (P < 0.02). Cartilaginous osteophytes were larger in knockout mice at 4 weeks (P < 0.01), but by 8 weeks osteophyte maturity and size were no different from those in wild-type mice. Articular chondrocyte hypertrophy with positive type X collagen and DIPEN staining occurred in both wild-type and knockout mouse joints. Conclusion Our findings indicate that structural cartilage damage in a mouse model of OA is dependent on MMP-13 activity. Chondrocyte hypertrophy is not regulated by MMP-13 activity in this model and does not in itself lead to cartilage erosion. MMP-13 deficiency can inhibit cartilage erosion in the presence of aggrecan depletion, supporting the potential for therapeutic intervention in established OA with MMP-13 inhibitors.
Resumo:
Information on the variation available for different plant attributes has enabled germplasm collections to be effectively utilised in plant breeding. A world sourced collection of white clover germplasm has been developed at the White Clover Resource Centre at Glen Innes, New South Wales. This collection of 439 accessions was characterised under field conditions as a preliminary study of the genotypic variation for morphological attributes; stolon density, stolon branching, number of nodes. number of rooted nodes, stolon thickness, internode length, leaf length, plant height and plant spread, together with seasonal herbage yield. Characterisation was conducted on different batches of germplasm (subsets of accessions taken from the complete collection) over a period of five years. Inclusion of two check cultivars, Haifa and Huia, in each batch enabled adjustment of the characterisation data for year effects and attribute-by-year interaction effects. The component of variance for seasonal herbage yield among batches was large relative to that for accessions. Accession-by-experiment and accession-by-season interactions for herbage yield were not detected. Accession mean repeatability for herbage yield across seasons was intermediate (0.453). The components of genotypic variance among accessions for all attributes, except plant height, were larger than their respective standard errors. The estimates of accession mean repeatability for the attributes ranged from low (0.277 for plant height) to intermediate (0.544 for internode length). Multivariate techniques of clustering and ordination were used to investigate the diversity present among the accessions in the collection. Both cluster analysis and principal component analysis suggested that seven groups of accessions existed. It was also proposed from the pattern analysis results that accessions from a group characterised by large leaves, tall plants and thick stolons could be crossed with accessions from a group that had above average stolon density and stolon branching. This material could produce breeding populations to be used in recurrent selection for the development of white clover cultivars for dryland summer moisture stress environments in Australia. The germplasm collection was also found to be deficient in genotypes with high stolon density, high number of branches high number of rooted nodes and large leaves. This warrants addition of new germplasm accessions possessing these characteristics to the present germplasm collection.