177 resultados para Hazardous industrial waste
Resumo:
Peeling is an essential phase of post harvesting and processing industry; however the undesirable losses and waste rate that occur during peeling stage are always the main concern of food processing sector. There are three methods of peeling fruits and vegetables including mechanical, chemical and thermal, depending on the class and type of fruit. By comparison, the mechanical method is the most preferred; this method keeps edible portions of produce fresh and creates less damage. Obviously reducing material losses and increasing the quality of the process has a direct effect on the whole efficiency of food processing industry which needs more study on technological aspects of this industrial segment. In order to enhance the effectiveness of food industrial practices it is essential to have a clear understanding of material properties and behaviour of tissues under industrial processes. This paper presents the scheme of research that seeks to examine tissue damage of tough skinned vegetables under mechanical peeling process by developing a novel FE model of the process using explicit dynamic finite element analysis approach. In the proposed study a nonlinear model which will be capable of simulating the peeling process specifically, will be developed. It is expected that unavailable information such as cutting force, maximum shearing force, shear strength, tensile strength and rupture stress will be quantified using the new FEA model. The outcomes will be used to optimize and improve the current mechanical peeling methods of this class of vegetables and thereby enhance the overall effectiveness of processing operations. Presented paper aims to review available literature and previous works have been done in this area of research and identify current gap in modelling and simulation of food processes.
Resumo:
Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
The issue of a more sustainable environment has been the aim of many governments and institutions for decades. Current research and literature has shown the continuing impact of global development and population increases on the planet as a whole. Issues such as carbon emissions, global warming, resource sustainability, industrial pollution, waste management and the decline in scarce resources, including food, are now realities and are being addressed at various levels. All levels of government, business and the public now equally share responsibility for the continued sustainable environment in general. Although these issues of global warming, climate change and the overuse of scarce resources are well documented, and constantly covered in all media forms, public attitudes to these issues vary significantly. Despite being aware of these issues many individuals consider that the problem is one for governments to tackle and that their individual efforts are not important or necessary. In many cases individuals are concerned with sustainability, but are either not in the position to take action due to economic circumstances or are not prepared to offset sustainability gains with personal interests...
Resumo:
House dust is a heterogeneous matrix, which contains a number of biological materials and particulate matter gathered from several sources. It is the accumulation of a number of semi-volatile and non-volatile contaminants. The contaminants are trapped and preserved. Therefore, house dust can be viewed as an archive of both the indoor and outdoor air pollution. There is evidence to show that on average, people tend to stay indoors most of the time and this increases exposure to house dust. The aims of this investigation were to: " assess the levels of Polycyclic Aromatic Hydrocarbons (PAHs), elements and pesticides in the indoor environment of the Brisbane area; " identify and characterise the possible sources of elemental constituents (inorganic elements), PAHs and pesticides by means of Positive Matrix Factorisation (PMF); and " establish the correlations between the levels of indoor air pollutants (PAHs, elements and pesticides) with the external and internal characteristics or attributes of the buildings and indoor activities by means of multivariate data analysis techniques. The dust samples were collected during the period of 2005-2007 from homes located in different suburbs of Brisbane, Ipswich and Toowoomba, in South East Queensland, Australia. A vacuum cleaner fitted with a paper bag was used as a sampler for collecting the house dust. A survey questionnaire was filled by the house residents which contained information about the indoor and outdoor characteristics of their residences. House dust samples were analysed for three different pollutants: Pesticides, Elements and PAHs. The analyses were carried-out for samples of particle size less than 250 µm. The chemical analyses for both pesticides and PAHs were performed using a Gas Chromatography Mass Spectrometry (GC-MS), while elemental analysis was carried-out by using Inductively-Coupled Plasma-Mass Spectroscopy (ICP-MS). The data was subjected to multivariate data analysis techniques such as multi-criteria decision-making procedures, Preference Ranking Organisation Method for Enrichment Evaluations (PROMETHEE), coupled with Geometrical Analysis for Interactive Aid (GAIA) in order to rank the samples and to examine data display. This study showed that compared to the results from previous works, which were carried-out in Australia and overseas, the concentrations of pollutants in house dusts in Brisbane and the surrounding areas were relatively very high. The results of this work also showed significant correlations between some of the physical parameters (types of building material, floor level, distance from industrial areas and major road, and smoking) and the concentrations of pollutants. Types of building materials and the age of houses were found to be two of the primary factors that affect the concentrations of pesticides and elements in house dust. The concentrations of these two types of pollutant appear to be higher in old houses (timber houses) than in the brick ones. In contrast, the concentrations of PAHs were noticed to be higher in brick houses than in the timber ones. Other factors such as floor level, and distance from the main street and industrial area, also affected the concentrations of pollutants in the house dust samples. To apportion the sources and to understand mechanisms of pollutants, Positive Matrix Factorisation (PMF) receptor model was applied. The results showed that there were significant correlations between the degree of concentration of contaminants in house dust and the physical characteristics of houses, such as the age and the type of the house, the distance from the main road and industrial areas, and smoking. Sources of pollutants were identified. For PAHs, the sources were cooking activities, vehicle emissions, smoking, oil fumes, natural gas combustion and traces of diesel exhaust emissions; for pesticides the sources were application of pesticides for controlling termites in buildings and fences, treating indoor furniture and in gardens for controlling pests attacking horticultural and ornamental plants; for elements the sources were soil, cooking, smoking, paints, pesticides, combustion of motor fuels, residual fuel oil, motor vehicle emissions, wearing down of brake linings and industrial activities.
Resumo:
Retrofit projects are different from newly-built projects in many respects. A retrofit project involves an existing building, which imposes constraints on the owners, designers, operators and constructors throughout the project process. Retrofit projects are risky, complex, less predictable and difficult to be well planned, which need greater coordination. For office building retrofit project, further restrictions will apply as these buildings often locate in CBD areas and most have to remain operational during the progression of project work. Issues such as site space, material storage and handling, noise and dust, need to be considered and well addressed. In this context, waste management is even more challenging with small spaces for waste handling, uncertainties in waste control, and impact of waste management activities on project delivery and building occupants. Current literatures on waste management in office building retrofit projects focus on increasing waste recovery rate based on project planning, monitoring and stakeholders’ collaboration. However, previous research has not produced knowledge of understanding the particular retrofit processes and their impact on waste generation and management. This paper discusses the interim results of a continuing research on new strategies for waste management in office building retrofit projects. Firstly based on the literature review, it summarizes the unique characteristics of office building retrofit projects and their influence on waste management. An assumption on waste management strategies is formed. Semi-structured interviews were conducted towards industry practitioners and findings are then presented in the paper. The assumption of the research was validated in the interviews from the opinions and experiences of the respondents. Finally the research develops a process model for waste management in office building retrofit projects. It introduces two different waste management strategies. For the dismantling phase, waste is generated fast along with the work progress, so integrated planning for project delivery and waste generation is needed in order to organize prompt handling and treatment. For the fit-out phase, the work is similar as new construction. Factors which are particularly linked to generating waste on site need to be controlled and monitored. Continuing research in this space will help improve the practice of waste management in office building retrofit projects. The new strategies will help promote the practicality of project waste planning and management and stakeholders’ capability of coordinating waste management and project delivery.
Resumo:
The renovation of biomass waste in the form of date seed waste into activated carbon and biofuel by fixed bed pyrolysis reactor has been focused in this study to obtain gaseous, liquid, and solid products. The date seed in particle form is pyrolysed in an externally heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 400◦C to 600◦C. A maximum liquid yield of 50wt.% and char of 30wt.% are obtained at a reactor bed temperature of 500◦C with a running time of 120 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived. Decolonization of 85–97% is recorded for the textile effluent and 75–90% for the tannery effluent, in all cases decreasing with temperature increase. Good adsorption capacity of the prepared activated carbon in case of diluted textile and tannery effluent was found.
Resumo:
The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils.
Resumo:
This article takes the establishment and demise of Manchester’s Creative Industries Development Service (CIDS) as an exemplary case study for the ways in which creative industry policy has intersected with urban economic policy over the last decade. The authors argue that the creative industries required specific kinds of economic development agencies that would be able to act as “intermediaries” between the distinct languages of policymakers and “creatives.” They discuss the tensions inherent in such an approach and how CIDS attempted to manage them and suggest that the main reason for the demise of the CIDS was the domination of the “economic” over the “cultural” logic, both of which are present within the creative industries policy discourse.
Resumo:
Among various thermo-chemical conversion processes, pyrolysis is considered as an emerging technology for liquid oil production. The conversion of biomass waste in the form of plum seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from this plum seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The plum seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 39 wt% of biomass feed is obtained with particle size of 2.36-4.75 mm at a reactor bed temperature of 520oC with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 22.39 MJ/kg which is higher than other biomass derived pyrolysis oils.
Resumo:
While the literature points to significant shifts in young peoples’ labour market participation and the social, economic and political context in which this has occurred, it tells us little about whether and in what sense young people can be considered as industrial citizens. We explored the notion of youth citizenship using data derived from 48 focus groups conducted with 216 young people (13-16 years of age) at 19 high schools in Australia. The findings reveal the ways in which several key dimensions of industrial citizenship come to be shaped and have implications for addressing the vulnerability of youth in employment and informing policy and action.
Resumo:
This paper showcases two design tools; the ‘storyboard’ and ‘a day in the life’ demonstrated to design students in their foundational year (first year) of study. By employing these tools during the design process the aim was to provoke students to consider and design for emotional experiences for potential users. The assessment asked students to design an MP3 player using these tools. This is demonstrated through a student project that successfully used the tools and method introduced. The teaching theory, project context, student outcome as well as challenges faced by students using this approach are discussed. The paper concludes with implications for teaching emotion theory at an undergraduate level and potential future directions.
Resumo:
This paper introduces the first iteration of a study aimed at grouping similar food types together in a refrigerator to increase the awareness of available foods for consumers in a domestic environment. The goals of the project are twofold: i) Raise the awareness of available foods for all members of a household; ii) Reduce the amount of expired food waste in the household. The project implemented a paper-based colour scheme in refrigerators in households, assigning colours to particular food types (e.g. green to fruit and vegetables, red to meat, etc.). The findings show that the colour coding raised participants’ awareness of available food items in the fridge, particularly for those participants who were not directly involved in the shopping and initial storage of each food item. The findings also indicate that such awareness led to a reduction in expiration of food and thus general food waste in the household. These preliminary findings suggest that raising awareness of food availability through categorisation and efficient communication of this information may lead to a reduction in food waste in domestic environments.
Resumo:
Waste is intrinsic to the fashion system. Fashion is predicated on built-in obsolescence, and as such outmoded garments are rapidly discarded to charity shops or landfill. However, the story of fashion is also one of abundance and extravagance in design ideas. Every season there are new design details – prints, embroidery, embellishments, shapes and textures. This excess of ideas is in itself another form of waste, albeit one that is culturally nourishing. The grave of a fashion garment may also be the grave of a season’s research and creativity. This paper compares the tangible waste of the industry with its intangible waste, namely fashion’s creativity and cultural excess. Fashion’s excess and abundance of trends and ideas makes any move to curb the environmental impact difficult. For all practitioners of fashion – whether designers or consumers – the waste and excess inherent in the fashion system is a difficult ethical terrain to negotiate. However, inverting the wasteful phases of the production cycle can help reframe waste from pollution to a source of nourishment for future practice. While creative excesses of designers may be ‘wasted’ after a season, fashion styles and tropes are recycled and reinvented, with the once passé styles and design ideas from previous years revalorized and returned into the fashion system. Similarly, material garments acquire new value through entering or re-entering the second hand or vintage markets. Design processes can utilise pre or post-consumer textile waste, or eliminate waste through design. In these processes, waste becomes the primary source of nourishment for future fashion cycles.