106 resultados para GEOLOGICAL SAMPLES
Resumo:
Study region The Galilee and Eromanga basins are located in central Queensland, Australia. Both basins are components of the Great Artesian Basin which host some of the most significant groundwater resources in Australia. Study focus This study evaluates the influence of regional faults on groundwater flow in an aquifer/aquitard interbedded succession that form one of the largest Artesian Basins in the world. In order to assess the significance of regional faults as potential barriers or conduits to groundwater flow, vertical displacements of the major aquifers and aquitards were studied at each major fault and the general hydraulic relationship of units that are juxtaposed by the faults were considered. A three-dimensional (3D) geological model of the Galilee and Eromanga basins was developed based on integration of well log data, seismic surfaces, surface geology and elevation data. Geological structures were mapped in detail and major faults were characterised. New hydrological insights for the region Major faults that have been described in previous studies have been confirmed within the 3D geological model domain and a preliminary assessment of their hydraulic significance has been conducted. Previously unknown faults such as the Thomson River Fault (herein named) have also been identified in this study.
Resumo:
Reported homocysteine (HCY) concentrations in human serum show poor concordance amongst laboratories due to endogenous HCY in the matrices used for assay calibrators and QCs. Hence, we have developed a fully validated LC–MS/MS method for measurement of HCY concentrations in human serum samples that addresses this issue by minimising matrix effects. We used small volumes (20 μL) of 2% Bovine Serum Albumin (BSA) as surrogate matrix for making calibrators and QCs with concentrations adjusted for the endogenous HCY concentration in the surrogate matrix using the method of standard additions. To aliquots (20 μL) of human serum samples, calibrators or QCs, were added HCY-d4 (internal standard) and tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) as reducing agent. After protein precipitation, diluted supernatants were injected into the LC–MS/MS. Calibration curves were linear; QCs were accurate (5.6% deviation from nominal), precise (CV% ≤ 9.6%), stable for four freeze–thaw cycles, and when stored at room temperature for 5 h or at −80 °C (27 days). Recoveries from QCs in surrogate matrix or pooled human serum were 91.9 and 95.9%, respectively. There was no matrix effect using 6 different individual serum samples including one that was haemolysed. Our LC–MS/MS method has satisfied all of the validation criteria of the 2012 EMA guideline.
Resumo:
The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.
Resumo:
With the aim of elucidating the seasonal behaviour of rare earth elements (REEs), surface and groundwaters were collected under dry and wet conditions in different hydrological units of the Teviot Brook catchment (Southeast Queensland, Australia). Sampled waters showed a large degree of variability in both REE abundance and normalised patterns. Overall REE abundance ranged over nearly three orders of magnitude, and was consistently lower in the sedimentary bedrock aquifer (18ppt<∑REE<477ppt) than in the other hydrological systems studied. Abundance was greater in springs draining rhyolitic rocks (∑REE=300 and 2054ppt) than in springs draining basalt ranges (∑REE=25 and 83ppt), yet was highly variable in the shallow alluvial groundwater (16ppt<∑REE<5294ppt) and, to a lesser extent, in streamwater (85ppt<∑REE<2198ppt). Generally, waters that interacted with different rock types had different REE patterns. In order to obtain an unbiased characterisation of REE patterns, the ratios between light and middle REEs (R(M/L)) and the ratios between middle and heavy REEs (R(H/M)) were calculated for each sample. The sedimentary bedrock aquifer waters had highly evolved patterns depleted in light REEs and enriched in middle and heavy REEs (0.17
Resumo:
The use of organophosphate esters (PFRs) as flame retardants and plasticizers has increased due to the ban of some brominated flame retardants. There is however some concern regarding the toxicity, particularly carcinogenicity and neurotoxicity, of some of the PFRs. In this study we applied wastewater analysis to assess use of PFRs by the Australian population. Influent samples were collected from eleven wastewater treatment plants (STPs) in Australia on Census day and analysed for PFRs using gas chromatography coupled with mass spectrometry (GC-MS). Per capita mass loads of PFRs were calculated using the accurate Census head counts. The results indicate that tris(2-butoxyethyl) phosphate (TBOEP) has the highest per capita input into wastewater followed by tris(2-chloroisopropyl) phosphate (TCIPP), tris(isobutyl) phosphate (TIBP), tris(2-chloroethyl) phosphate (TCEP) and tris(1,3-dichloroisopropyl) phosphate (TDCIPP). Similar PFR profiles were observed across the Australian STPs and a comparison with European and U.S. STPs indicated similar PFR concentrations. We estimate that approximately 2.1 mg person−1 day−1 of PFRs are input into Australian wastewater which equates to 16 tonnes per annum.
Resumo:
A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.
Resumo:
It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.
Resumo:
A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
Statistical comparison of oil samples is an integral part of oil spill identification, which deals with the process of linking an oil spill with its source of origin. In current practice, a frequentist hypothesis test is often used to evaluate evidence in support of a match between a spill and a source sample. As frequentist tests are only able to evaluate evidence against a hypothesis but not in support of it, we argue that this leads to unsound statistical reasoning. Moreover, currently only verbal conclusions on a very coarse scale can be made about the match between two samples, whereas a finer quantitative assessment would often be preferred. To address these issues, we propose a Bayesian predictive approach for evaluating the similarity between the chemical compositions of two oil samples. We derive the underlying statistical model from some basic assumptions on modeling assays in analytical chemistry, and to further facilitate and improve numerical evaluations, we develop analytical expressions for the key elements of Bayesian inference for this model. The approach is illustrated with both simulated and real data and is shown to have appealing properties in comparison with both standard frequentist and Bayesian approaches
Resumo:
A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.