279 resultados para Fuzzy Power Flow
Resumo:
Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.
Resumo:
Flow patterns and aerodynamic characteristics behind three side-by-side square cylinders has been found depending upon the unequal gap spacing (g1 = s1/d and g2 = s2/d) between the three cylinders and the Reynolds number (Re) using the Lattice Boltzmann method. The effect of Reynolds numbers on the flow behind three cylinders are numerically studied for 75 ≤ Re ≤ 175 and chosen unequal gap spacings such as (g1, g2) = (1.5, 1), (3, 4) and (7, 6). We also investigate the effect of g2 while keeping g1 fixed for Re = 150. It is found that a Reynolds number have a strong effect on the flow at small unequal gap spacing (g1, g2) = (1.5, 1.0). It is also found that the secondary cylinder interaction frequency significantly contributes for unequal gap spacing for all chosen Reynolds numbers. It is observed that at intermediate unequal gap spacing (g1, g2) = (3, 4) the primary vortex shedding frequency plays a major role and the effect of secondary cylinder interaction frequencies almost disappear. Some vortices merge near the exit and as a result small modulation found in drag and lift coefficients. This means that with the increase in the Reynolds numbers and unequal gap spacing shows weakens wakes interaction between the cylinders. At large unequal gap spacing (g1, g2) = (7, 6) the flow is fully periodic and no small modulation found in drag and lift coefficients signals. It is found that the jet flows for unequal gap spacing strongly influenced the wake interaction by varying the Reynolds number. These unequal gap spacing separate wake patterns for different Reynolds numbers: flip-flopping, in-phase and anti-phase modulation synchronized, in-phase and anti-phase synchronized. It is also observed that in case of equal gap spacing between the cylinders the effect of gap spacing is stronger than the Reynolds number. On the other hand, in case of unequal gap spacing between the cylinders the wake patterns strongly depends on both unequal gap spacing and Reynolds number. The vorticity contour visualization, time history analysis of drag and lift coefficients, power spectrum analysis of lift coefficient and force statistics are systematically discussed for all chosen unequal gap spacings and Reynolds numbers to fully understand this valuable and practical problem.
Resumo:
Mixed convection laminar two-dimensional boundary-layer flow of non-Newtonian pseudo-plastic fluids is investigated from a horizontal circular cylinder with uniform surface heat flux using a modified power-law viscosity model, that contains no unrealistic limits of zero or infinite viscosity; consequently, no irremovable singularities are introduced into boundary-layer formulations for such fluids. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning fluids in terms of the fluid temperature distributions, rate of heat transfer in terms of the local Nusselt number.
Resumo:
The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Large integration of solar Photo Voltaic (PV) in distribution network has resulted in over-voltage problems. Several control techniques are developed to address over-voltage problem using Deterministic Load Flow (DLF). However, intermittent characteristics of PV generation require Probabilistic Load Flow (PLF) to introduce variability in analysis that is ignored in DLF. The traditional PLF techniques are not suitable for distribution systems and suffer from several drawbacks such as computational burden (Monte Carlo, Conventional convolution), sensitive accuracy with the complexity of system (point estimation method), requirement of necessary linearization (multi-linear simulation) and convergence problem (Gram–Charlier expansion, Cornish Fisher expansion). In this research, Latin Hypercube Sampling with Cholesky Decomposition (LHS-CD) is used to quantify the over-voltage issues with and without the voltage control algorithm in the distribution network with active generation. LHS technique is verified with a test network and real system from an Australian distribution network service provider. Accuracy and computational burden of simulated results are also compared with Monte Carlo simulations.
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.