271 resultados para Free-vibration
Resumo:
Maintenance trains travel in convoy. In Australia, only the first train of the convoy pays attention to the track sig- nalization (the other convoy vehicles simply follow the preceding vehicle). Because of human errors, collisions can happen between the maintenance vehicles. Although an anti-collision system based on a laser distance meter is already in operation, the existing system has a limited range due to the curvature of the tracks. In this paper, we introduce an anti-collision system based on vision. The two main ideas are, (1) to warp the camera image into an image where the rails are parallel through a projective transform, and (2) to track the two rail curves simultaneously by evaluating small parallel segments. The performance of the system is demonstrated on an image dataset.
Resumo:
Architecture for a Free Subjectivity reformulates the French philosopher Gilles Deleuze's model of subjectivity for architecture, by surveying the prolific effects of architectural encounter, and the spaces that figure in them. For Deleuze and his Lacanian collaborator Félix Guattari, subjectivity does not refer to a person, but to the potential for and event of matter becoming subject, and the myriad ways for this to take place. By extension, this book theorizes architecture as a self-actuating or creative agency for the liberation of purely "impersonal effects." Imagine a chemical reaction, a riot in the banlieues, indeed a walk through a city. Simone Brott declares that the architectural object does not merely take part in the production of subjectivity, but that it constitutes its own.
Resumo:
Dynamic computer simulation techniques are used to develop and apply a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage localisation in beams and plates. Numerically simulated modal data obtained through finite element analyses are used to develop algorithms based on changes of modal flexibility and modal strain energy before and after damage and used as the indices for assessment of the state of structural health. The proposed procedure is illustrated through its application to flexural members under different damage scenarios and the results confirm its feasibility for damage assessment.
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.
Resumo:
This paper was retracted by the Journal of Stem Cells and Development on February 15, 2013.
Resumo:
This paper is concerned with some plane strain and axially symmetric free surface problems which arise in the study of static granular solids that satisfy the Coulomb-Mohr yield condition. Such problems are inherently nonlinear, and hence difficult to attack analytically. Given a Coulomb friction condition holds on a solid boundary, it is shown that the angle a free surface is allowed to attach to the boundary is dependent only on the angle of wall friction, assuming the stresses are all continuous at the attachment point, and assuming also that the coefficient of cohesion is nonzero. As a model problem, the formation of stable cohesive arches in hoppers is considered. This undesirable phenomena is an obstacle to flow, and occurs when the hopper outlet is too small. Typically, engineers are concerned with predicting the critical outlet size for a given hopper and granular solid, so that for hoppers with outlets larger than this critical value, arching cannot occur. This is a topic of considerable practical interest, with most accepted engineering methods being conservative in nature. Here, the governing equations in two limiting cases (small cohesion and high angle of internal friction) are considered directly. No information on the critical outlet size is found; however solutions for the shape of the free boundary (the arch) are presented, for both plane and axially symmetric geometries.
Resumo:
The two-dimensional free surface flow of a finite-depth fluid into a horizontal slot is considered. For this study, the effects of viscosity and gravity are ignored. A generalised Schwarz-Christoffel mapping is used to formulate the problem in terms of a linear integral equation, which is solved exactly with the use of a Fourier transform. The resulting free surface profile is given explicitly in closed-form.
Resumo:
As a result of a broad invitation extended by Professor Martin Betts, Executive Dean of the Faculty of Built Environment and Engineering, to the community of interest at QUT, a cross-disciplinary collaborative workshop was conducted to contribute ideas about responding to the Government of India’s urgent requirement to implement a program to re-house slum dwellers. This is a complex problem facing the Indian Ministry of Housing. Not only does the government aspire to eradicate existing slum conditions and to achieve tangible results within five years, but it must also ensure that slums do not form in the future. The workshop focused on technological innovation in construction to deliver transformation from the current unsanitary and overcrowded informal urban settlements to places that provide the economically weaker sections of Indian society with healthy, environmentally sustainable, economically viable mass housing that supports successful urban living. The workshop was conducted in two part process as follows: Initially, QUT academics from diverse fields shared current research and provided technical background to contextualise the challenge at a pre-workshop briefing session. This was followed by a one-day workshop during which participants worked intensively in multi-disciplinary groups through a series of exercises to develop innovative approaches to the complex problem of slum redevelopment. Dynamic, compressed work sessions, interspersed with cross-functional review and feedback by the whole group took place throughout the day. Reviews emphasised testing the concepts for their level of complexity, and likelihood of success. The two-stage workshop process achieved several objectives: Inspired a sense of shared purpose amongst a diverse group of academics Built participants’ knowledge of each other’s capacity Engaged multi disciplinary team in an innovative design research process Built participants’ confidence in the collaborative process Demonstrated that collaborative problem solving can create solutions that represent transformative change. Developed a framework of how workable solutions might be developed for the program through follow up workshops and charrettes of a similar nature involving stakeholders drawn from the context of the slum housing program management.
Resumo:
Axial deformations resulting from in-plane loads (axial forces) of plate elements impact significantly on their vibration characteristics. Although, numerous methods have been developed to quantify axial forces and hence deformations of individual plate elements with different boundary conditions based on their natural frequencies, these methods are unable to apply to the plate elements in a structural system. This is because the natural frequency is a global parameter for the entire structure. Thus, this paper proposes a comprehensive vibration based procedure to quantify axial deformations of plate elements in a structural framing system. Unique capabilities of the proposed method present through illustrative examples. Keywords- Plate Elements, Dynamic Stiffness Matrix, Finite Element Method, Vibration Characteristics, Axial Deformation
Resumo:
The purpose of this review is to integrate and summarize specific measurement topics (instrument and metric choice, validity, reliability, how many and what types of days, reactivity, and data treatment) appropriate to the study of youth physical activity. Research quality pedometers are necessary to aid interpretation of steps per day collected in a range of young populations under a variety of circumstances. Steps per day is the most appropriate metric choice, but steps per minute can be used to interpret time-in-intensity in specifically delimited time periods (e.g., physical education class). Reported intraclass correlations (ICC) have ranged from .65 over 2 days (although higher values also have been reported for 2 days) to .87 over 8 days (although higher values have been reported for fewer days). Reported ICCs are lower on weekend days (.59) versus weekdays (.75) and lower over vacation days (.69) versus school days (.74). There is no objective evidence of reactivity at this time. Data treatment includes (a) identifying and addressing missing values, (b) identifying outliers and reducing data appropriately if necessary, and (c) transforming the data as required in preparation for inferential analysis. As more pedometry studies in young populations are published, these preliminary methodological recommendations should be modified and refined.
Resumo:
This paper presents the outcome of investigations and studies of the vibratioon characteristics and response of low frequency structural systems for a composite concrete steel floor plate and a reverse profiled cable tensioned foot bridge. These highly dynamic and slender structure are the engineering response to planning, aesthetic and environmental influences, but are prone to excessive and complex vibration. A number of design codes and practice guides provided information to engineers for vibration mitigation However, they are limited to very simple load function applied to a few uncoupled translational modes of excitation. Motivated by the need to address the knowledge gaps in this area, the investigations described in this paper focused on synchronous multi-modal and coupled excitation of the floor plate and footbridge with considerations for torsinal effects. The results showed the potential for adverse dynamic response from multi-modal and coupled excitation influenced by patterned loading, structure geometry, stiffness distribution, directional effects, forcing functions based on activity frequency and duration of foot contact, and modal participation. It was also shown that higher harmonics of the load frequency can excite higher modes in the composite floor structure. Such responsive behaviour is prevalent mainly in slender and lightweight construction and not in stiffer and heavier structural systems. The analytical techniques and methods used in these investigations can supplement the current limited code and best practice provisions for mitigating the impact of human induced vibrations in slender structural systems.
Resumo:
The vibration serviceability limit state is an important design consideration for two-way, suspended concrete floors that is not always well understood by many practicing structural engineers. Although the field of floor vibration has been extensively developed, at present there are no convenient design tools that deal with this problem. Results from this research have enabled the development of a much-needed, new method for assessing the vibration serviceability of flat, suspended concrete floors in buildings. This new method has been named, the Response Coefficient-Root Function (RCRF) method. Full-scale, laboratory tests have been conducted on a post-tensioned floor specimen at Queensland University of Technology’s structural laboratory. Special support brackets were fabricated to perform as frictionless, pinned connections at the corners of the specimen. A series of static and dynamic tests were performed in the laboratory to obtain basic material and dynamic properties of the specimen. Finite-element-models have been calibrated against data collected from laboratory experiments. Computational finite-element-analysis has been extended to investigate a variety of floor configurations. Field measurements of floors in existing buildings are in good agreement with computational studies. Results from this parametric investigation have led to the development of new approach for predicting the design frequencies and accelerations of flat, concrete floor structures. The RCRF method is convenient tool to assist structural engineers in the design for the vibration serviceability limit-state of in-situ concrete floor systems.