484 resultados para Framingham risk score
Resumo:
This chapter investigates the phenomenon of fashion from the perspective of ‘the look.’ This is achieved by the wearer (as opposed to the designer) and also forms the basis of fashion media, where it represents the ‘decisive moment’ of photography. The chapter argues that the evolving ‘look’ of fashion can be analysed to identify tensions between novelty and emulation, the unique and the universal, in contemporary consumer culture and status-based social-network markets. It explores the work of fashion photographer Corinne Day and artist Olga Tobreluts to identify the theme of ‘risk culture.’
Resumo:
China has a reputation as an economy based on utility: the large-scale manufacture of low-priced goods. But useful values like functionality, fitness for purpose and efficiency are only part of the story. More important are what Veblen called ‘honorific’ values, arguably the driving force of development, change and value in any economy. To understand the Chinese economy therefore, it is not sufficient to point to its utilitarian aspect. Honorific status-competition is a more fundamental driver than utilitarian cost-competition. We argue that ‘social network markets’ are the expression of these honorific values, relationships and connections that structure and coordinate individual choices. This paper explores how such markets are developing in China in the area of fashion and fashion media. These, we argue, are an expression of ‘risk culture’ for high-end entrepreneurial consumers and producers alike, providing a stimulus to dynamic innovation in the arena of personal taste and comportment, as part of an international cultural system based on constant change. We examine the launch of Vogue China in 2005, and China’s reception as a fashion player among the international editions of Vogue, as an expression of a ‘decisive moment’ in the integration of China into an international social network market based on honorific values.
Resumo:
Background Advanced paternal age (APA) is associated with an increased risk of neurodevelopmental disorders such as autism and schizophrenia, as well as with dyslexia and reduced intelligence. The aim of this study was to examine the relationship between paternal age and performance on neurocognitive measures during infancy and childhood. Methods and Findings A sample of singleton children (n = 33,437) was drawn from the US Collaborative Perinatal Project. The outcome measures were assessed at 8 mo, 4 y, and 7 y (Bayley scales, Stanford Binet Intelligence Scale, Graham-Ernhart Block Sort Test, Wechsler Intelligence Scale for Children, Wide Range Achievement Test). The main analyses examined the relationship between neurocognitive measures and paternal or maternal age when adjusted for potential confounding factors. Advanced paternal age showed significant associations with poorer scores on all of the neurocognitive measures apart from the Bayley Motor score. The findings were broadly consistent in direction and effect size at all three ages. In contrast, advanced maternal age was generally associated with better scores on these same measures. Conclusions The offspring of older fathers show subtle impairments on tests of neurocognitive ability during infancy and childhood. In light of secular trends related to delayed fatherhood, the clinical implications and the mechanisms underlying these findings warrant closer scrutiny.
Resumo:
This document provides a review of international and national practices in investment decision support tools in road asset management. Efforts were concentrated on identifying analytic frameworks, evaluation methodologies and criteria adopted by current tools. Emphasis was also given to how current approaches support Triple Bottom Line decision-making. Benefit Cost Analysis and Multiple Criteria Analysis are principle methodologies in supporting decision-making in Road Asset Management. The complexity of the applications shows significant differences in international practices. There is continuing discussion amongst practitioners and researchers regarding to which one is more appropriate in supporting decision-making. It is suggested that the two approaches should be regarded as complementary instead of competitive means. Multiple Criteria Analysis may be particularly helpful in early stages of project development, say strategic planning. Benefit Cost Analysis is used most widely for project prioritisation and selecting the final project from amongst a set of alternatives. Benefit Cost Analysis approach is useful tool for investment decision-making from an economic perspective. An extension of the approach, which includes social and environmental externalities, is currently used in supporting Triple Bottom Line decision-making in the road sector. However, efforts should be given to several issues in the applications. First of all, there is a need to reach a degree of commonality on considering social and environmental externalities, which may be achieved by aggregating the best practices. At different decision-making level, the detail of consideration of the externalities should be different. It is intended to develop a generic framework to coordinate the range of existing practices. The standard framework will also be helpful in reducing double counting, which appears in some current practices. Cautions should also be given to the methods of determining the value of social and environmental externalities. A number of methods, such as market price, resource costs and Willingness to Pay, are found in the review. The use of unreasonable monetisation methods in some cases has discredited Benefit Cost Analysis in the eyes of decision makers and the public. Some social externalities, such as employment and regional economic impacts, are generally omitted in current practices. This is due to the lack of information and credible models. It may be appropriate to consider these externalities in qualitative forms in a Multiple Criteria Analysis. Consensus has been reached in considering noise and air pollution in international practices. However, Australia practices generally omitted these externalities. Equity is an important consideration in Road Asset Management. The considerations are either between regions, or social groups, such as income, age, gender, disable, etc. In current practice, there is not a well developed quantitative measure for equity issues. More research is needed to target this issue. Although Multiple Criteria Analysis has been used for decades, there is not a generally accepted framework in the choice of modelling methods and various externalities. The result is that different analysts are unlikely to reach consistent conclusions about a policy measure. In current practices, some favour using methods which are able to prioritise alternatives, such as Goal Programming, Goal Achievement Matrix, Analytic Hierarchy Process. The others just present various impacts to decision-makers to characterise the projects. Weighting and scoring system are critical in most Multiple Criteria Analysis. However, the processes of assessing weights and scores were criticised as highly arbitrary and subjective. It is essential that the process should be as transparent as possible. Obtaining weights and scores by consulting local communities is a common practice, but is likely to result in bias towards local interests. Interactive approach has the advantage in helping decision-makers elaborating their preferences. However, computation burden may result in lose of interests of decision-makers during the solution process of a large-scale problem, say a large state road network. Current practices tend to use cardinal or ordinal scales in measure in non-monetised externalities. Distorted valuations can occur where variables measured in physical units, are converted to scales. For example, decibels of noise converts to a scale of -4 to +4 with a linear transformation, the difference between 3 and 4 represents a far greater increase in discomfort to people than the increase from 0 to 1. It is suggested to assign different weights to individual score. Due to overlapped goals, the problem of double counting also appears in some of Multiple Criteria Analysis. The situation can be improved by carefully selecting and defining investment goals and criteria. Other issues, such as the treatment of time effect, incorporating risk and uncertainty, have been given scant attention in current practices. This report suggested establishing a common analytic framework to deal with these issues.
Resumo:
Risks and uncertainties are inevitable in engineering projects and infrastructure investments. Decisions about investment in infrastructure such as for maintenance, rehabilitation and construction works can pose risks, and may generate significant impacts on social, cultural, environmental and other related issues. This report presents the results of a literature review of current practice in identifying, quantifying and managing risks and predicting impacts as part of the planning and assessment process for infrastructure investment proposals. In assessing proposals for investment in infrastructure, it is necessary to consider social, cultural and environmental risks and impacts to the overall community, as well as financial risks to the investor. The report defines and explains the concept of risk and uncertainty, and describes the three main methodology approaches to the analysis of risk and uncertainty in investment planning for infrastructure, viz examining a range of scenarios or options, sensitivity analysis, and a statistical probability approach, listed here in order of increasing merit and complexity. Forecasts of costs, benefits and community impacts of infrastructure are recognised as central aspects of developing and assessing investment proposals. Increasingly complex modelling techniques are being used for investment evaluation. The literature review identified forecasting errors as the major cause of risk. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. For risks that cannot be readily quantified, assessment techniques commonly include classification or rating systems for likelihood and consequence. The report outlines the system used by the Australian Defence Organisation and in the Australian Standard on risk management. After each risk is identified and quantified or rated, consideration can be given to reducing the risk, and managing any remaining risk as part of the scope of the project. The literature review identified use of risk mapping techniques by a North American chemical company and by the Australian Defence Organisation. This literature review has enabled a risk assessment strategy to be developed, and will underpin an examination of the feasibility of developing a risk assessment capability using a probability approach.
Final : report assessing risk and variation in maintenance and rehabilitation costs for road network
Resumo:
This report presents the results of research projects conducted by The Australian Cooperative Research Centre for Construction Innovation, Queensland University of Technology, RMIT University, Queensland Government Department of Main Roads and Queensland Department of Public Works. The research projects aimed at developing a methodology for assessing variation and risk in investment in road network, including the application of the method in assessing road network performance and maintenance and rehabilitation costs for short- and long-term future investment.
Resumo:
Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.
Resumo:
An estimation of costs for maintenance and rehabilitation is subject to variation due to the uncertainties of input parameters. This paper presents the results of an analysis to identify input parameters that affect the prediction of variation in road deterioration. Road data obtained from 1688 km of a national highway located in the tropical northeast of Queensland in Australia were used in the analysis. Data were analysed using a probability-based method, the Monte Carlo simulation technique and HDM-4’s roughness prediction model. The results of the analysis indicated that among the input parameters the variability of pavement strength, rut depth, annual equivalent axle load and initial roughness affected the variability of the predicted roughness. The second part of the paper presents an analysis to assess the variation in cost estimates due to the variability of the overall identified critical input parameters.
Resumo:
In my work with secondary school students who have disengaged from mainstream classrooms, I have often been surprised at the ways they enthusiastically engage with the projects on offer. They have demonstrated that, in apparent contradiction of their classroom behaviour, they still maintain hope in achieving a positive outcome from education. In a long-running schools-university project employing a “students-as-researchers” approach to investigating educational disadvantage, “at-risk” students have produced high quality results. Naturally, I wanted to know what it was about this sort of pedagogy that seemed to work for them. In this chapter, then, I outline the project and discuss some reasons for disengagement. I then address the features of the project that the participants themselves have identified as being instrumental in their re-engagement with formal education. Finally, I consider how these features may be transposed to maintaining the educational engagement of at-risk students in mainstream classrooms.
Resumo:
Queensland Department of Main Roads, Australia, spends approximately A$ 1 billion annually for road infrastructure asset management. To effectively manage road infrastructure, firstly road agencies not only need to optimise the expenditure for data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. This paper presents the results of case studies in using the probability-based method for an integrated approach (i.e. assessing optimal costs of pavement strength data collection; calibrating deterioration prediction models that suit local condition and assessing risk-adjusted budget estimates for road maintenance and rehabilitation for assessing life-cycle budget estimates). The probability concept is opening the path to having the means to predict life-cycle maintenance and rehabilitation budget estimates that have a known probability of success (e.g. produce budget estimates for a project life-cycle cost with 5% probability of exceeding). The paper also presents a conceptual decision-making framework in the form of risk mapping in which the life-cycle budget/cost investment could be considered in conjunction with social, environmental and political issues.
Resumo:
A study has been conducted to investigate current practices on decision-making under risk and uncertainty for infrastructure project investments. It was found that many European countries such as the UK, France, Germany including Australia use scenarios for the investigation of the effects of risk and uncertainty of project investments. Different alternative scenarios are mostly considered during the engineering economic cost-benefit analysis stage. For instance, the World Bank requires an analysis of risks in all project appraisals. Risk in economic evaluation needs to be addressed by calculating sensitivity of the rate of return for a number of events. Risks and uncertainties of project developments arise from various sources of errors including data, model and forecasting errors. It was found that the most influential factors affecting risk and uncertainty resulted from forecasting errors. Data errors and model errors have trivial effects. It was argued by many analysts that scenarios do not forecast what will happen but scenarios indicate only what can happen from given alternatives. It was suggested that the probability distributions of end-products of the project appraisal, such as cost-benefit ratios that take forecasting errors into account, are feasible decision tools for economic evaluation. Political, social, environmental as well as economic and other related risk issues have been addressed and included in decision-making frameworks, such as in a multi-criteria decisionmaking framework. But no suggestion has been made on how to incorporate risk into the investment decision-making process.
Resumo:
Background: Injury is the leading cause of mortality for young people in Australia (AIHW, 2008). Adolescent injury mortality is consistently associated with risk taking behaviour, including transport and interpersonal violence (AIHW, 2003), which often occurs in the context of alcohol and other substance use. A rapid increase in risk taking and injury through early to late adolescence highlights the need for effective school based interventions. Aim: The aim of the current research was to examine the relationship between school connectedness and adolescent risk and injury, in order to inform effective prevention approaches. School connectedness, or students’ feelings of belongingness to school, has been shown to be a critical protective factor in adolescence which can be targeted effectively through teacher interventions. Despite evidence linking low school connectedness with increased health risk behaviour, including substance use and violence, research has not yet addressed possible links between connectedness and a broader range of risk taking behaviours (e.g. transport risks) or injury. Method: This study involved background data collection to inform the development of an intervention. A total of 595 Year 9 students (aged 13-14 years) from 5 Southeast Queensland high schools completed questionnaires that included measures of school connectedness, risk taking behaviour, alcohol and other substance use, and injuries. Results: Increased school connectedness was found to be associated with fewer transport risk behaviours and with decreased alcohol and other substance use for both males and females. Similarly, increased school connectedness was associated with fewer passenger and motorcycle injuries for male participants. Both males and females with increased school connectedness reported fewer alcohol related injuries. Implications: These results indicate that school connectedness appears to have protective effects for early adolescence. These findings may also hold for older adolescents and indicate that it may be an important factor to target in school based risk and injury prevention programs. A school connectedness intervention is currently being designed, focusing on teacher professional development. The intervention will be implemented in conjunction with a curriculum based injury prevention program for Year 9 students and will be evaluated through a large scale cluster randomised trial involving 26 schools.
Resumo:
Aims: Changing behaviour to reduce stroke risk is a difficult prospect made particularly complex because of psychological factors. This study examined predictors of intentions and behaviours to reduce stroke risk in a sample of at-risk individuals, seeking to find how knowledge and health beliefs influenced both intention and actual behaviour to reduce stroke risk. Methods: A repeated measures design was used to assess behavioural intentions at time 1 (T1) and subsequent behaviour (T2). One hundred and twenty six respondents completed an online survey at T1, and behavioural follow-up data were collected from approximately 70 participants 1 month later. Predictors were stroke knowledge, demographic variables, and beliefs about stroke that were derived from an expanded health belief model. Dependent measures were: exercise and weight loss, and intention to engage in these behaviours to reduce stroke risk. Findings: Multiple hierarchical regression analyses showed that, for exercise and weight loss respectively, different health beliefs predicted intention to control stroke risk. The most important exercise-related health beliefs were benefits, susceptibility, and self-efficacy; for weight loss, the most important beliefs were barriers, and to a lesser degree, susceptibility and subjective norm. Conclusions: Health beliefs may play an important role in stroke prevention, particularly beliefs about susceptibility because these emerged for both behaviours. Stroke education and prevention programmes that selectively target the health beliefs relevant to specific behaviours may prove most efficacious.