312 resultados para Environmental monitoring - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

From human biomonitoring data that are increasingly collected in the United States, Australia, and in other countries from large-scale field studies, we obtain snap-shots of concentration levels of various persistent organic pollutants (POPs) within a cross section of the population at different times. Not only can we observe the trends within this population with time, but we can also gain information going beyond the obvious time trends. By combining the biomonitoring data with pharmacokinetic modeling, we can re-construct the time-variant exposure to individual POPs, determine their intrinsic elimination half-lives in the human body, and predict future levels of POPs in the population. Different approaches have been employed to extract information from human biomonitoring data. Pharmacokinetic (PK) models were combined with longitudinal data1, with single2 or multiple3 average concentrations of a cross-sectional data (CSD), or finally with multiple CSD with or without empirical exposure data4. In the latter study, for the first time, the authors based their modeling outputs on two sets of CSD and empirical exposure data, which made it possible that their model outputs were further constrained due to the extensive body of empirical measurements. Here we use a PK model to analyze recent levels of PBDE concentrations measured in the Australian population. In this study, we are able to base our model results on four sets5-7 of CSD; we focus on two PBDE congeners that have been shown3,5,8-9 to differ in intake rates and half-lives with BDE-47 being associated with high intake rates and a short half-life and BDE-153 with lower intake rates and a longer half-life. By fitting the model to PBDE levels measured in different age groups in different years, we determine the level of intake of BDE-47 and BDE-153, as well as the half-lives of these two chemicals in the Australian population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Household air pollution (HAP), arising mainly from the combustion of solid and other polluting fuels, is responsible for a very substantial public health burden, most recently estimated as causing 3.5 million premature deaths in 2010. These patterns of household fuel use have also important negative impacts on safety, prospects for poverty reduction and the environment, including climate change. Building on previous air quality guidelines, the WHO is developing new guidelines focused on household fuel combustion, covering cooking, heating and lighting, and although global, the key focus is low and middle income countries reflecting the distribution of disease burden. As discussed in this paper, currently in development, the guidelines will include reviews of a wide range of evidence including fuel use in homes, emissions from stoves and lighting, household air pollution and exposure levels experienced by populations, health risks, impacts of interventions on HAP and exposure, and also key factors influencing sustainable and equitable adoption of improved stoves and cleaner fuels. GRADE, the standard method used for guidelines evidence review may not be well suited to the variety and nature of evidence required for this project, and a modified approach is being developed and tested. Work on the guidelines is being carried out in close collaboration with the UN Foundation Global Alliance on Clean cookstoves, allowing alignment with specific tools including recently developed international voluntary standards for stoves, and the development of country action plans. Following publication, WHO plans to work closely with a number of countries to learn from implementation efforts, in order to further strengthen support and guidance. A case study on the situation and policy actions to date in Bhutan provide an illustration of the challenges and opportunities involved, and the timely importance of the new guidelines and associated research, evaluation and policy development agendas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. A range of chemical species have been associated with particulate matter and of special concern are the hazardous chemicals that can accentuate health problems. If the sources of such particles can be identified then strategies can be developed for the reduction of air pollution and consequently, the improvement of the quality of life. In this investigation, particle number size distribution data and the concentrations of chemical species were obtained at two sites in Brisbane, Australia. Source apportionment was used to determine the sources (or factors) responsible for the particle size distribution data. The apportionment was performed by Positive Matrix Factorisation (PMF) and Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS), and the results were compared with information from the gaseous chemical composition analysis. Although PCA/APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources identified by both methods include: traffic 1, traffic 2, local traffic, biomass burning, and two unassigned factors. Thus motor vehicle related activities had the most impact on the data with the average contribution from nearly all sources to the measured concentrations higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology which utilised a combination of three types of data related to particulate matter to determine the sources could assist future development of particle emission control and reduction strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The overall aim of our research was to characterize airborne particles from selected nanotechnology processes and to utilize the data to develop and test quantitative particle concentration-based criteria that can be used to trigger an assessment of particle emission controls. We investigated particle number concentration (PNC), particle mass (PM) concentration, count median diameter (CMD), alveolar deposited surface area, elemental composition, and morphology from sampling of aerosols arising from six nanotechnology processes. These included fibrous and non-fibrous particles, including carbon nanotubes (CNTs). We adopted standard occupational hygiene principles in relation to controlling peak emission and exposures, as outlined by both Safe Work Australia, (1) and the American Conference of Governmental Industrial Hygienists (ACGIH®). (2) The results from the study were used to analyses peak and 30-minute averaged particle number and mass concentration values measured during the operation of the nanotechnology processes. Analysis of peak (highest value recorded) and 30-minute averaged particle number and mass concentration values revealed: Peak PNC20–1000 nm emitted from the nanotechnology processes were up to three orders of magnitude greater than the local background particle concentration (LBPC). Peak PNC300–3000 nm was up to an order of magnitude greater, and PM2.5 concentrations up to four orders of magnitude greater. For three of these nanotechnology processes, the 30-minute average particle number and mass concentrations were also significantly different from the LBPC (p-value < 0.001). We propose emission or exposure controls may need to be implemented or modified, or further assessment of the controls be undertaken, if concentrations exceed three times the LBPC, which is also used as the local particle reference value, for more than a total of 30 minutes during a workday, and/or if a single short-term measurement exceeds five times the local particle reference value. The use of these quantitative criteria, which we are terming the universal excursion guidance criteria, will account for the typical variation in LBPC and inaccuracy of instruments, while precautionary enough to highlight peaks in particle concentration likely to be associated with particle emission from the nanotechnology process. Recommendations on when to utilize local excursion guidance criteria are also provided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated that exposure to particulate air pollution is associated with several adverse health effects. Recently, interest has focused on ultrafine particles (UFPs, diameter ≤ 100 nm), due to the adverse health effects caused by their ability to induce inflammation and deposit in secondary organs [1]. These effects are much more pronounced in children because they inhale a higher dose of UFPs relative to both lung size (when compared with adults) [2] and increased breathing rates, since they are generally more physically active than adults ...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within-building spatial variability of indoor air quality may influence substantially the reliability of human exposure assessments based on single point samples, but have hitherto been little studied. To investigate and understand the within-building spatial variation of air pollutants, field measurements were conducted in a 7 level office building in Brisbane, Australia. The building consists of 3 sections (A side, Meddler and B side).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed. This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions. Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Lake Wivenhoe Integrated Wireless Sensor Network is conceptually similar to traditional SCADA monitoring and control approaches. However, it is applied in an open system using wireless devices to monitor processes that affect water quality at both a high spatial and temporal frequency. This monitoring assists scientists to better understand drivers of key processes that influence water quality and provide the operators with an early warning system if below standard water enters the reservoir. Both of these aspects improve the safety and efficient delivery of drinking water to the end users.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A key challenge for the 21st Century is to make our cities more liveable and foster economically sustainable, environmentally responsible, and socially inclusive communities. Design thinking, particularly a human-centred approach, offers a way to tackle this challenge. Findings from two recent Australian research projects highlight how facilitating sustainable, liveable communities in a humid sub-tropical environment requires an in-depth understanding of people’s perspectives, experiences and practices. Project 1 (‘Research House’) documents the reflections of a family who lived in a ‘test’ sustainable house for two years, outlining their experience and evaluations of universal design and sustainable technologies. The study family was very impressed with the natural lighting, natural ventilation, spaciousness and ease of access, which contributed significantly to their comfort and the liveability of their home. Project 2 (‘Inner-Urban High Density Living’) explored Brisbane residents’ opinions about high-density living, through a survey (n=636), interviews (n=24), site observations (over 300 hours) and environmental monitoring, assessing opinions on the liveability of their individual dwelling, the multi-unit host building and the surrounding neighbourhood. Nine areas, categorised into three general domains, were identified as essential for enhancing high density liveability. In terms of the dwelling, thermal comfort/ventilation, natural light, noise mitigation were important; shared space, good neighbour protocols, and support for environmentally sustainable behaviour were desired in the building/complex; and accessible/sustainable transport, amenities and services, sense of community were considered important in the surrounding neighbourhood. Combined, these findings emphasise the importance and complexity associated with designing liveable building, cities and communities, illustrating how adopting a design thinking, human-centred approach will help create sustainable communities that will meet the needs of current and future generations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomonitoring has become the ‘gold standard’ in assessing chemical exposures, and plays an important role in risk assessment. The pooling of biological specimens – combining multiple individual specimens into a single sample – can be used in biomonitoring studies to monitor levels of exposure and identify exposure trends, or to identify susceptible populations in a cost-effective manner. Pooled samples provide an estimate of central tendency, and may also reveal information about variation within the population. The development of a pooling strategy requires careful consideration of the type and number of samples collected, the number of pools required, and the number of specimens to combine per pool in order to maximize the type and robustness of the data. Creative pooling strategies can be used to explore exposure-outcome associations, and extrapolation from other larger studies can be useful in identifying elevated exposures in specific individuals. The use of pooled specimens is advantageous as it saves significantly on analytical costs, may reduce the time and resources required for recruitment, and in certain circumstances, allows quantification of samples approaching the limit of detection. In addition, use of pooled samples can provide population estimates while avoiding ethical difficulties that may be associated with reporting individual results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increased levels of polybrominated diphenyl ethers (PBDEs) can occur particularly in dust and soil surrounding facilities that recycle products containing PBDEs. This may be the source of increased exposure for nearby workers and residents. To investigate, we measured PBDE levels in soil, office dust and blood of workers at the closest workplace (i.e. within 100m) to a large automotive shredding and metal recycling facility in Brisbane, Australia. The workplace investigated in this study was independent of the automotive shredding facility and was one of approximately 50 businesses of varying types within a relatively large commercial/industrial area surrounding the recycling facility. Concentrations of PBDEs in soils were at least an order of magnitude greater than background levels in the area. Congener profiles were dominated by larger molecular weight congeners; in particular BDE-209. This reflected the profile in outdoor air samples previously collected at this site. Biomonitoring data from blood serum indicated no differential exposure for workers near the recycling facility compared to a reference group of office workers, also in Brisbane. Unlike air, indoor dust and soil sample profiles, serum samples from both worker groups were dominated by congeners BDE-47, BDE-153, BDE-99, BDE-100 and BDE-183 and was similar to the profile previously reported in the general Australian population. Estimated exposures for workers near the industrial point source suggested indoor workers had significantly higher exposure than outdoor workers due to their exposure to indoor dust rather than soil. However, no relationship was observed between blood PBDE levels and different roles and activity patterns of workers on-site. These comparisons of PBDE levels in serum provide additional insight into the inter-individual variability within Australia. Results also indicate congener patterns in the workplace environment did not match blood profiles of workers. This was attributed to the relatively high background exposures for the general Australian population via dietary intake and the home environment.