219 resultados para Empirical penalties
Resumo:
In the study of traffic safety, expected crash frequencies across sites are generally estimated via the negative binomial model, assuming time invariant safety. Since the time invariant safety assumption may be invalid, Hauer (1997) proposed a modified empirical Bayes (EB) method. Despite the modification, no attempts have been made to examine the generalisable form of the marginal distribution resulting from the modified EB framework. Because the hyper-parameters needed to apply the modified EB method are not readily available, an assessment is lacking on how accurately the modified EB method estimates safety in the presence of the time variant safety and regression-to-the-mean (RTM) effects. This study derives the closed form marginal distribution, and reveals that the marginal distribution in the modified EB method is equivalent to the negative multinomial (NM) distribution, which is essentially the same as the likelihood function used in the random effects Poisson model. As a result, this study shows that the gamma posterior distribution from the multivariate Poisson-gamma mixture can be estimated using the NM model or the random effects Poisson model. This study also shows that the estimation errors from the modified EB method are systematically smaller than those from the comparison group method by simultaneously accounting for the RTM and time variant safety effects. Hence, the modified EB method via the NM model is a generalisable method for estimating safety in the presence of the time variant safety and the RTM effects.
Resumo:
A review of the literature related to issues involved in irrigation induced agricultural development (IIAD) reveals that: (1) the magnitude, sensitivity and distribution of social welfare of IIAD is not fully analysed; (2) the impacts of excessive pesticide use on farmers’ health are not adequately explained; (3) no analysis estimates the relationship between farm level efficiency and overuse of agro-chemical inputs under imperfect markets; and (4) the method of incorporating groundwater extraction costs is misleading. This PhD thesis investigates these issues by using primary data, along with secondary data from Sri Lanka. The overall findings of the thesis can be summarised as follows. First, the thesis demonstrates that Sri Lanka has gained a positive welfare change as a result of introducing new irrigation technology. The change in the consumer surplus is Rs.48,236 million, while the change in the producer surplus is Rs. 14,274 millions between 1970 and 2006. The results also show that the long run benefits and costs of IIAD depend critically on the magnitude of the expansion of the irrigated area, as well as the competition faced by traditional farmers (agricultural crowding out effects). The traditional sector’s ability to compete with the modern sector depends on productivity improvements, reducing production costs and future structural changes (spillover effects). Second, the thesis findings on pesticides used for agriculture show that, on average, a farmer incurs a cost of approximately Rs. 590 to 800 per month during a typical cultivation period due to exposure to pesticides. It is shown that the value of average loss in earnings per farmer for the ‘hospitalised’ sample is Rs. 475 per month, while it is approximately Rs. 345 per month for the ‘general’ farmers group during a typical cultivation season. However, the average willingness to pay (WTP) to avoid exposure to pesticides is approximately Rs. 950 and Rs. 620 for ‘hospitalised’ and ‘general’ farmers’ samples respectively. The estimated percentage contribution for WTP due to health costs, lost earnings, mitigating expenditure, and disutility are 29, 50, 5 and 16 per cent respectively for hospitalised farmers, while they are 32, 55, 8 and 5 per cent respectively for ‘general’ farmers. It is also shown that given market imperfections for most agricultural inputs, farmers are overusing pesticides with the expectation of higher future returns. This has led to an increase in inefficiency in farming practices which is not understood by the farmers. Third, it is found that various groundwater depletion studies in the economics literature have provided misleading optimal water extraction quantity levels. This is due to a failure to incorporate all production costs in the relevant models. It is only by incorporating quality changes to quantity deterioration, that it is possible to derive socially optimal levels. Empirical results clearly show that the benefits per hectare per month considering both the avoidance costs of deepening agro-wells by five feet from the existing average, as well as the avoidance costs of maintaining the water salinity level at 1.8 (mmhos/Cm), is approximately Rs. 4,350 for farmers in the Anuradhapura district and Rs. 5,600 for farmers in the Matale district.
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations. However, people have limited knowledge on this complex topic. In this research, 1) the impact of traffic oscillations on freeway crash occurrences has been measured using the matched case-control design. The results consistently reveal that oscillations have a more significant impact on freeway safety than the average traffic states. 2) Wavelet Transform has been adopted to locate oscillations' origins and measure their characteristics along their propagation paths using vehicle trajectory data. 3) Lane changing maneuver's impact on the immediate follower is measured and modeled. The knowledge and the new models generated from this study could provide better understanding on fundamentals of congested traffic; enable improvements to existing traffic control strategies and freeway crash countermeasures; and instigate people to develop new operational strategies with the objective of reducing the negative effects of oscillatory driving.
Resumo:
In this paper we consider the case of large cooperative communication systems where terminals use the protocol known as slotted amplify-and-forward protocol to aid the source in its transmission. Using the perturbation expansion methods of resolvents and large deviation techniques we obtain an expression for the Stieltjes transform of the asymptotic eigenvalue distribution of a sample covariance random matrix of the type HH† where H is the channel matrix of the transmission model for the transmission protocol we consider. We prove that the resulting expression is similar to the Stieltjes transform in its quadratic equation form for the Marcenko-Pastur distribution.
Resumo:
In this editorial letter, we provide the readers of Information Systems and e-Business Management with an introduction to Business Process Management and the challenges of empirical research in this field. We then briefly describe selected examples of current research efforts in this fields and how the papers accepted for this special issue contribute to extending our body of knowledge.
Resumo:
Operation in urban environments creates unique challenges for research in autonomous ground vehicles. Due to the presence of tall trees and buildings in close proximity to traversable areas, GPS outage is likely to be frequent and physical hazards pose real threats to autonomous systems. In this paper, we describe a novel autonomous platform developed by the Sydney-Berkeley Driving Team for entry into the 2007 DARPA Urban Challenge competition. We report empirical results analyzing the performance of the vehicle while navigating a 560-meter test loop multiple times in an actual urban setting with severe GPS outage. We show that our system is robust against failure of global position estimates and can reliably traverse standard two-lane road networks using vision for localization. Finally, we discuss ongoing efforts in fusing vision data with other sensing modalities.
Resumo:
We investigate the behavior of the empirical minimization algorithm using various methods. We first analyze it by comparing the empirical, random, structure and the original one on the class, either in an additive sense, via the uniform law of large numbers, or in a multiplicative sense, using isomorphic coordinate projections. We then show that a direct analysis of the empirical minimization algorithm yields a significantly better bound, and that the estimates we obtain are essentially sharp. The method of proof we use is based on Talagrand’s concentration inequality for empirical processes.
Resumo:
We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.
Resumo:
We study sample-based estimates of the expectation of the function produced by the empirical minimization algorithm. We investigate the extent to which one can estimate the rate of convergence of the empirical minimizer in a data dependent manner. We establish three main results. First, we provide an algorithm that upper bounds the expectation of the empirical minimizer in a completely data-dependent manner. This bound is based on a structural result due to Bartlett and Mendelson, which relates expectations to sample averages. Second, we show that these structural upper bounds can be loose, compared to previous bounds. In particular, we demonstrate a class for which the expectation of the empirical minimizer decreases as O(1/n) for sample size n, although the upper bound based on structural properties is Ω(1). Third, we show that this looseness of the bound is inevitable: we present an example that shows that a sharp bound cannot be universally recovered from empirical data.
Resumo:
The reduction of CO2 emissions and social exclusion are two key elements of UK transport strategy. Despite intensive research on each theme, little effort has so far been made linking the relationship between emissions and social exclusion. In addition, current knowledge on each theme is limited to urban areas; little research is available on these themes for rural areas. This research contributes to this gap in the literature by analysing 157 weekly activity-travel diary data collected from three case study areas with differential levels of area accessibility and area mobility options, located in rural Northern Ireland. Individual weekly CO2 emission levels from personal travel diaries (both hot exhaust emission and cold-start emission) were calculated using average speed models for different modes of transport. The socio-spatial patterns associated with CO2 emissions were identified using a general linear model whereas binary logistic regression analyses were conducted to identify mode choice behaviour and activity patterns. This research found groups that emitted a significantly lower level of CO2 included individuals living in an area with a higher level of accessibility and mobility, non-car, non-working, and low-income older people. However, evidence in this research also shows that although certain groups (e.g. those working, and residing in an area with a lower level of accessibility) emitted higher levels of CO2, their rate of participation in activities was however found to be significantly lower compared to their counterparts. Based on the study findings, this research highlights the need for both soft (e.g. teleworking) and physical (e.g. accessibility planning) policy measures in rural areas in order to meet government’s stated CO2 reduction targets while at the same time enhancing social inclusion.
Resumo:
Previous research on entrepreneurial teams has failed to settle the controversy over whether team heterogeneity helps or hinders new venture performance. Reconciling this inconsistency, this paper suggests a new conceptual approach to disentangle differential effects of team heterogeneity by modeling two separate heterogeneity dimensions, namely knowledge scope and knowledge disparity. Analyzing unique data on functional experiences of the members of 337 start-up teams, we find support for our contention of team heterogeneity as a two-dimensional concept. Results suggest that knowledge disparity negatively relates to both start-ups’ entrepreneurial and innovative performance. In contrast, we find knowledge scope to positively affect entrepreneurial performance, while it shows an inverse U-shaped relationship to innovative start-up performance.
Resumo:
The adoption of IT Governance (ITG) continues to be an important topic for research. Many researchers have focused their attention on how these practices are currently being implemented in the many diverse areas and industries. Literature shows that a majority of these studies have only been based on industries and organizations in developed countries. There exist very few researches that look specifically within the context of a developing country. Furthermore, there seems to be a lack of research on identifying the barriers or inhibitors to IT Governance adoption within the context of an emerging yet still developing Asian country. This research sets out to justify, substantiate and improve on a priori model developed to study the barriers to the adoption of ITG practice using qualitative data obtained through a series of semi-structured interviews conducted on organizations in Malaysia.